11a
117
(K11a
117
)
A knot diagram
1
Linearized knot diagam
5 1 9 7 2 11 3 10 4 8 6
Solving Sequence
2,6
5 1 3 11 7 8 4 10 9
c
5
c
1
c
2
c
11
c
6
c
7
c
4
c
10
c
9
c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
57
2u
56
+ ··· + 4u 1i
I
u
2
= hu + 1i
* 2 irreducible components of dim
C
= 0, with total 58 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
57
2u
56
+ · · · + 4u 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
11
=
u
3
u
3
+ u
a
7
=
u
6
u
4
+ 1
u
6
+ 2u
4
u
2
a
8
=
u
14
+ 3u
12
4u
10
+ u
8
+ 2u
6
2u
4
+ 1
u
16
4u
14
+ 8u
12
8u
10
+ 4u
8
a
4
=
u
14
+ 3u
12
4u
10
+ u
8
+ 2u
6
2u
4
+ 1
u
14
4u
12
+ 7u
10
6u
8
+ 2u
6
u
2
a
10
=
u
33
8u
31
+ ··· 4u
5
+ u
u
35
+ 9u
33
+ ··· u
3
+ u
a
9
=
u
52
+ 13u
50
+ ··· + u
2
+ 1
u
54
14u
52
+ ··· 2u
4
+ u
2
a
9
=
u
52
+ 13u
50
+ ··· + u
2
+ 1
u
54
14u
52
+ ··· 2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
56
+ 12u
55
+ ··· + 36u 22
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
57
+ 2u
56
+ ··· + 4u + 1
c
2
u
57
+ 30u
56
+ ··· + 2u + 1
c
3
, c
9
u
57
9u
55
+ ··· + 2u + 1
c
4
u
57
8u
56
+ ··· + 4u + 5
c
6
, c
11
u
57
+ 3u
56
+ ··· + 192u + 23
c
7
u
57
+ 2u
56
+ ··· + 170u + 25
c
8
, c
10
u
57
+ 18u
56
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
57
30y
56
+ ··· + 2y 1
c
2
y
57
6y
56
+ ··· + 10y 1
c
3
, c
9
y
57
18y
56
+ ··· + 2y 1
c
4
y
57
+ 6y
56
+ ··· 1114y 25
c
6
, c
11
y
57
+ 45y
56
+ ··· 20314y 529
c
7
y
57
6y
56
+ ··· + 20350y 625
c
8
, c
10
y
57
+ 42y
56
+ ··· + 26y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.836048 + 0.550317I
4.33306 + 3.41463I 2.47924 4.18588I
u = 0.836048 0.550317I
4.33306 3.41463I 2.47924 + 4.18588I
u = 0.871162 + 0.481731I
1.78928 4.12553I 10.51550 + 7.67121I
u = 0.871162 0.481731I
1.78928 + 4.12553I 10.51550 7.67121I
u = 0.976200 + 0.175447I
0.260427 0.093386I 10.10428 + 0.75716I
u = 0.976200 0.175447I
0.260427 + 0.093386I 10.10428 0.75716I
u = 0.854260 + 0.553633I
3.54472 9.12902I 4.29187 + 9.35832I
u = 0.854260 0.553633I
3.54472 + 9.12902I 4.29187 9.35832I
u = 1.025370 + 0.120940I
0.97680 + 5.27922I 11.94161 5.93896I
u = 1.025370 0.120940I
0.97680 5.27922I 11.94161 + 5.93896I
u = 0.776284 + 0.476241I
1.34370 + 1.99239I 1.22032 4.61457I
u = 0.776284 0.476241I
1.34370 1.99239I 1.22032 + 4.61457I
u = 0.685277 + 0.557032I
4.76168 + 1.02575I 1.09591 2.82669I
u = 0.685277 0.557032I
4.76168 1.02575I 1.09591 + 2.82669I
u = 0.659353 + 0.565162I
4.09639 + 4.65710I 2.54128 2.76987I
u = 0.659353 0.565162I
4.09639 4.65710I 2.54128 + 2.76987I
u = 0.152096 + 0.803844I
0.21111 + 9.73679I 6.35596 6.96593I
u = 0.152096 0.803844I
0.21111 9.73679I 6.35596 + 6.96593I
u = 0.155610 + 0.790091I
1.21747 4.03618I 4.49079 + 2.19532I
u = 0.155610 0.790091I
1.21747 + 4.03618I 4.49079 2.19532I
u = 0.111905 + 0.792068I
5.01846 + 3.97499I 12.06289 3.93262I
u = 0.111905 0.792068I
5.01846 3.97499I 12.06289 + 3.93262I
u = 1.102490 + 0.477153I
0.600300 0.796809I 0
u = 1.102490 0.477153I
0.600300 + 0.796809I 0
u = 1.119950 + 0.489456I
0.82059 + 6.47261I 0
u = 1.119950 0.489456I
0.82059 6.47261I 0
u = 0.044927 + 0.773200I
2.60957 1.93878I 9.59639 + 2.80772I
u = 0.044927 0.773200I
2.60957 + 1.93878I 9.59639 2.80772I
u = 1.180170 + 0.409792I
4.63162 1.95472I 0
u = 1.180170 0.409792I
4.63162 + 1.95472I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.198100 + 0.370055I
2.82122 + 0.17822I 0
u = 1.198100 0.370055I
2.82122 0.17822I 0
u = 0.107682 + 0.735407I
0.97923 1.98324I 4.77053 + 3.25742I
u = 0.107682 0.735407I
0.97923 + 1.98324I 4.77053 3.25742I
u = 1.208710 + 0.369755I
3.88380 5.81260I 0
u = 1.208710 0.369755I
3.88380 + 5.81260I 0
u = 1.207110 + 0.396302I
8.92696 + 0.08907I 0
u = 1.207110 0.396302I
8.92696 0.08907I 0
u = 1.177440 + 0.489853I
4.05781 + 6.54158I 0
u = 1.177440 0.489853I
4.05781 6.54158I 0
u = 1.201970 + 0.429227I
6.25189 + 6.18788I 0
u = 1.201970 0.429227I
6.25189 6.18788I 0
u = 1.193890 + 0.471955I
5.94721 2.57635I 0
u = 1.193890 0.471955I
5.94721 + 2.57635I 0
u = 1.185350 + 0.514468I
1.80837 + 8.85455I 0
u = 1.185350 0.514468I
1.80837 8.85455I 0
u = 1.194420 + 0.499684I
8.19464 8.71399I 0
u = 1.194420 0.499684I
8.19464 + 8.71399I 0
u = 0.573785 + 0.409516I
1.012750 + 0.227361I 8.27265 0.51249I
u = 0.573785 0.409516I
1.012750 0.227361I 8.27265 + 0.51249I
u = 1.190800 + 0.516494I
2.8518 14.5970I 0
u = 1.190800 0.516494I
2.8518 + 14.5970I 0
u = 0.260945 + 0.634945I
3.29597 2.09703I 2.01630 + 2.69781I
u = 0.260945 0.634945I
3.29597 + 2.09703I 2.01630 2.69781I
u = 0.305661 + 0.608350I
2.89549 3.46679I 2.84958 + 3.34170I
u = 0.305661 0.608350I
2.89549 + 3.46679I 2.84958 3.34170I
u = 0.677040
0.929485 11.1190
6
II. I
u
2
= hu + 1i
(i) Arc colorings
a
2
=
0
1
a
6
=
1
0
a
5
=
1
1
a
1
=
1
0
a
3
=
1
1
a
11
=
1
0
a
7
=
1
0
a
8
=
0
1
a
4
=
0
1
a
10
=
1
1
a
9
=
1
2
a
9
=
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
, c
9
u 1
c
2
, c
4
, c
8
c
10
u + 1
c
6
, c
11
u
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
7
c
8
, c
9
, c
10
y 1
c
6
, c
11
y
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
4.93480 18.0000
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)(u
57
+ 2u
56
+ ··· + 4u + 1)
c
2
(u + 1)(u
57
+ 30u
56
+ ··· + 2u + 1)
c
3
, c
9
(u 1)(u
57
9u
55
+ ··· + 2u + 1)
c
4
(u + 1)(u
57
8u
56
+ ··· + 4u + 5)
c
6
, c
11
u(u
57
+ 3u
56
+ ··· + 192u + 23)
c
7
(u 1)(u
57
+ 2u
56
+ ··· + 170u + 25)
c
8
, c
10
(u + 1)(u
57
+ 18u
56
+ ··· + 2u + 1)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y 1)(y
57
30y
56
+ ··· + 2y 1)
c
2
(y 1)(y
57
6y
56
+ ··· + 10y 1)
c
3
, c
9
(y 1)(y
57
18y
56
+ ··· + 2y 1)
c
4
(y 1)(y
57
+ 6y
56
+ ··· 1114y 25)
c
6
, c
11
y(y
57
+ 45y
56
+ ··· 20314y 529)
c
7
(y 1)(y
57
6y
56
+ ··· + 20350y 625)
c
8
, c
10
(y 1)(y
57
+ 42y
56
+ ··· + 26y 1)
12