11a
119
(K11a
119
)
A knot diagram
1
Linearized knot diagam
6 1 10 7 2 5 3 11 4 9 8
Solving Sequence
4,9
10 11 3 8 1 2 7 5 6
c
9
c
10
c
3
c
8
c
11
c
2
c
7
c
4
c
6
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
8
+ u
6
+ 3u
4
+ 2u
2
u + 1i
I
u
2
= hu
30
u
29
+ ··· + 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 38 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
8
+ u
6
+ 3u
4
+ 2u
2
u + 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
11
=
u
2
+ 1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
4
+ u
2
+ 1
u
4
a
1
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
u
2
a
2
=
u
4
u
2
1
u
6
+ 2u
4
+ u
3
+ 2u
2
+ 1
a
7
=
u
u
6
+ u
4
u
3
+ 2u
2
u + 1
a
5
=
u
3
u
5
+ u
4
+ u
3
+ u
2
+ 1
a
6
=
u
5
+ u
u
7
u
5
u
3
+ u
2
u + 1
a
6
=
u
5
+ u
u
7
u
5
u
3
+ u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
4u
6
4u
4
12u
3
12u
2
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
9
u
8
+ u
6
+ 3u
4
+ 2u
2
u + 1
c
2
, c
4
, c
6
c
8
, c
10
, c
11
u
8
+ 2u
7
+ 7u
6
+ 10u
5
+ 15u
4
+ 14u
3
+ 10u
2
+ 3u + 1
c
7
u
8
7u
7
+ 26u
6
57u
5
+ 81u
4
71u
3
+ 42u
2
20u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
9
y
8
+ 2y
7
+ 7y
6
+ 10y
5
+ 15y
4
+ 14y
3
+ 10y
2
+ 3y + 1
c
2
, c
4
, c
6
c
8
, c
10
, c
11
y
8
+ 10y
7
+ 39y
6
+ 74y
5
+ 75y
4
+ 58y
3
+ 46y
2
+ 11y + 1
c
7
y
8
+ 3y
7
+ 40y
6
+ 53y
5
+ 387y
4
101y
3
+ 220y
2
+ 272y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.338450 + 0.907350I
2.36499 4.78635I 7.25990 + 9.32742I
u = 0.338450 0.907350I
2.36499 + 4.78635I 7.25990 9.32742I
u = 0.894334 + 0.857566I
13.66310 0.79369I 4.03459 + 2.11393I
u = 0.894334 0.857566I
13.66310 + 0.79369I 4.03459 2.11393I
u = 0.840313 + 0.975020I
12.9062 + 12.0580I 2.66730 7.52058I
u = 0.840313 0.975020I
12.9062 12.0580I 2.66730 + 7.52058I
u = 0.392471 + 0.514949I
0.469731 + 1.216760I 2.55801 5.53294I
u = 0.392471 0.514949I
0.469731 1.216760I 2.55801 + 5.53294I
5
II. I
u
2
= hu
30
u
29
+ · · · + 2u + 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
11
=
u
2
+ 1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
4
+ u
2
+ 1
u
4
a
1
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
u
2
a
2
=
u
15
+ 2u
13
+ 6u
11
+ 8u
9
+ 10u
7
+ 8u
5
+ 4u
3
u
15
u
13
4u
11
3u
9
4u
7
2u
5
+ u
a
7
=
u
8
+ u
6
+ 3u
4
+ 2u
2
+ 1
u
10
2u
8
3u
6
4u
4
u
2
a
5
=
u
17
2u
15
7u
13
10u
11
15u
9
14u
7
10u
5
4u
3
u
u
19
+ 3u
17
+ 8u
15
+ 15u
13
+ 19u
11
+ 21u
9
+ 14u
7
+ 6u
5
+ u
3
+ u
a
6
=
u
26
+ 3u
24
+ ··· + 3u
2
+ 1
u
28
4u
26
+ ··· 7u
4
2u
2
a
6
=
u
26
+ 3u
24
+ ··· + 3u
2
+ 1
u
28
4u
26
+ ··· 7u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
25
12u
23
44u
21
88u
19
4u
18
164u
17
12u
16
224u
15
32u
14
256u
13
56u
12
228u
11
72u
10
160u
9
72u
8
88u
7
48u
6
40u
5
20u
4
28u
3
4u
2
12u 6
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
9
u
30
u
29
+ ··· + 2u + 1
c
2
, c
4
, c
6
c
8
, c
10
, c
11
u
30
+ 7u
29
+ ··· + 4u
2
+ 1
c
7
(u
15
+ 3u
14
+ ··· 5u 7)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
9
y
30
+ 7y
29
+ ··· + 4y
2
+ 1
c
2
, c
4
, c
6
c
8
, c
10
, c
11
y
30
+ 31y
29
+ ··· + 8y + 1
c
7
(y
15
+ 9y
14
+ ··· 171y 49)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.452252 + 0.939744I
5.01187 + 2.09461I 0.30918 3.37423I
u = 0.452252 0.939744I
5.01187 2.09461I 0.30918 + 3.37423I
u = 0.434887 + 0.955633I
4.70557 8.28968I 1.16488 + 8.39094I
u = 0.434887 0.955633I
4.70557 + 8.28968I 1.16488 8.39094I
u = 0.019728 + 0.944684I
2.41074 + 3.00115I 4.85411 2.57684I
u = 0.019728 0.944684I
2.41074 3.00115I 4.85411 + 2.57684I
u = 0.197860 + 0.871029I
3.14864 11.00170 + 0.I
u = 0.197860 0.871029I
3.14864 11.00170 + 0.I
u = 0.343092 + 0.793576I
0.34244 + 1.73470I 0.36395 4.47971I
u = 0.343092 0.793576I
0.34244 1.73470I 0.36395 + 4.47971I
u = 0.847869 + 0.850065I
5.01187 2.09461I 0.30918 + 3.37423I
u = 0.847869 0.850065I
5.01187 + 2.09461I 0.30918 3.37423I
u = 0.799403 + 0.896020I
2.41074 + 3.00115I 4.85411 2.57684I
u = 0.799403 0.896020I
2.41074 3.00115I 4.85411 + 2.57684I
u = 0.849380 + 0.882463I
6.81987 1.98171I 4.04276 + 2.49548I
u = 0.849380 0.882463I
6.81987 + 1.98171I 4.04276 2.49548I
u = 0.895044 + 0.849606I
13.3047 5.6388I 3.41159 + 2.70946I
u = 0.895044 0.849606I
13.3047 + 5.6388I 3.41159 2.70946I
u = 0.658622 + 0.369163I
6.81987 + 1.98171I 4.04276 2.49548I
u = 0.658622 0.369163I
6.81987 1.98171I 4.04276 + 2.49548I
u = 0.832514 + 0.928695I
6.67502 4.27520I 3.73863 + 2.74888I
u = 0.832514 0.928695I
6.67502 + 4.27520I 3.73863 2.74888I
u = 0.815148 + 0.948838I
4.70557 + 8.28968I 1.16488 8.39094I
u = 0.815148 0.948838I
4.70557 8.28968I 1.16488 + 8.39094I
u = 0.661870 + 0.335265I
6.67502 + 4.27520I 3.73863 2.74888I
u = 0.661870 0.335265I
6.67502 4.27520I 3.73863 + 2.74888I
u = 0.844833 + 0.970234I
13.3047 5.6388I 3.41159 + 2.70946I
u = 0.844833 0.970234I
13.3047 + 5.6388I 3.41159 2.70946I
u = 0.470358 + 0.199229I
0.34244 + 1.73470I 0.36395 4.47971I
u = 0.470358 0.199229I
0.34244 1.73470I 0.36395 + 4.47971I
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
9
(u
8
+ u
6
+ 3u
4
+ 2u
2
u + 1)(u
30
u
29
+ ··· + 2u + 1)
c
2
, c
4
, c
6
c
8
, c
10
, c
11
(u
8
+ 2u
7
+ 7u
6
+ 10u
5
+ 15u
4
+ 14u
3
+ 10u
2
+ 3u + 1)
· (u
30
+ 7u
29
+ ··· + 4u
2
+ 1)
c
7
(u
8
7u
7
+ 26u
6
57u
5
+ 81u
4
71u
3
+ 42u
2
20u + 8)
· (u
15
+ 3u
14
+ ··· 5u 7)
2
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
9
(y
8
+ 2y
7
+ 7y
6
+ 10y
5
+ 15y
4
+ 14y
3
+ 10y
2
+ 3y + 1)
· (y
30
+ 7y
29
+ ··· + 4y
2
+ 1)
c
2
, c
4
, c
6
c
8
, c
10
, c
11
(y
8
+ 10y
7
+ 39y
6
+ 74y
5
+ 75y
4
+ 58y
3
+ 46y
2
+ 11y + 1)
· (y
30
+ 31y
29
+ ··· + 8y + 1)
c
7
(y
8
+ 3y
7
+ 40y
6
+ 53y
5
+ 387y
4
101y
3
+ 220y
2
+ 272y + 64)
· (y
15
+ 9y
14
+ ··· 171y 49)
2
11