11a
122
(K11a
122
)
A knot diagram
1
Linearized knot diagam
6 1 11 9 2 10 3 5 4 7 8
Solving Sequence
2,5
6 1
3,9
4 10 8 7 11
c
5
c
1
c
2
c
4
c
9
c
8
c
7
c
11
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.11816 × 10
100
u
76
+ 2.64440 × 10
100
u
75
+ ··· + 6.73504 × 10
100
b 1.22538 × 10
101
,
1.71883 × 10
101
u
76
+ 1.13256 × 10
100
u
75
+ ··· + 6.73504 × 10
100
a + 2.54056 × 10
102
,
u
77
+ 17u
75
+ ··· + 27u 19i
I
u
2
= h−2u
12
u
11
6u
10
2u
9
12u
8
3u
7
16u
6
u
5
17u
4
+ u
3
9u
2
+ b + u 2,
u
13
2u
12
3u
11
4u
10
5u
9
8u
8
6u
7
8u
6
4u
5
9u
4
4u
2
+ a + u 3,
u
14
+ u
13
+ 4u
12
+ 3u
11
+ 9u
10
+ 6u
9
+ 14u
8
+ 7u
7
+ 16u
6
+ 6u
5
+ 12u
4
+ 3u
3
+ 5u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 91 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.12 × 10
100
u
76
+ 2.64 × 10
100
u
75
+ · · · + 6.74 × 10
100
b 1.23 ×
10
101
, 1.72 × 10
101
u
76
+ 1.13 × 10
100
u
75
+ · · · + 6.74 × 10
100
a + 2.54 ×
10
102
, u
77
+ 17u
75
+ · · · + 27u 19i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
9
=
2.55207u
76
0.168159u
75
+ ··· + 78.3494u 37.7215
0.166022u
76
0.392633u
75
+ ··· 4.69316u + 1.81941
a
4
=
0.359151u
76
1.87506u
75
+ ··· 18.9968u + 37.8121
0.319682u
76
+ 0.0483555u
75
+ ··· 4.22811u + 2.05086
a
10
=
0.846949u
76
+ 0.811198u
75
+ ··· 10.8950u 3.13453
0.402179u
76
0.132584u
75
+ ··· + 8.64112u + 0.469899
a
8
=
2.38605u
76
+ 0.224474u
75
+ ··· + 83.0425u 39.5409
0.166022u
76
0.392633u
75
+ ··· 4.69316u + 1.81941
a
7
=
3.00143u
76
0.717479u
75
+ ··· + 89.2717u 30.5770
0.417577u
76
0.798995u
75
+ ··· 0.00895837u + 7.52176
a
11
=
1.52003u
76
+ 1.34012u
75
+ ··· 26.0059u + 0.0397533
0.312532u
76
+ 0.595403u
75
+ ··· + 23.5262u 15.6637
a
11
=
1.52003u
76
+ 1.34012u
75
+ ··· 26.0059u + 0.0397533
0.312532u
76
+ 0.595403u
75
+ ··· + 23.5262u 15.6637
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.91959u
76
+ 2.19877u
75
+ ··· 80.9270u 2.56214
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
77
+ 17u
75
+ ··· + 27u 19
c
2
u
77
+ 34u
76
+ ··· 5009u 361
c
3
u
77
+ 7u
76
+ ··· + 18u + 1
c
4
, c
8
, c
9
u
77
u
76
+ ··· + 6u 19
c
6
, c
10
u
77
+ u
76
+ ··· + 420u 25
c
7
u
77
u
76
+ ··· + 138u 323
c
11
u
77
+ 5u
76
+ ··· 282u 31
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
77
+ 34y
76
+ ··· 5009y 361
c
2
y
77
+ 26y
76
+ ··· + 3771587y 130321
c
3
y
77
y
76
+ ··· 142y 1
c
4
, c
8
, c
9
y
77
+ 75y
76
+ ··· 3156y 361
c
6
, c
10
y
77
49y
76
+ ··· + 40050y 625
c
7
y
77
+ 21y
76
+ ··· 3986156y 104329
c
11
y
77
3y
76
+ ··· + 22112y 961
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.992506 + 0.102823I
a = 0.134683 + 1.153340I
b = 0.163116 + 1.299630I
0.401797 + 0.602420I 0
u = 0.992506 0.102823I
a = 0.134683 1.153340I
b = 0.163116 1.299630I
0.401797 0.602420I 0
u = 0.179722 + 0.986918I
a = 0.207589 + 0.902053I
b = 0.369165 + 0.668249I
3.15064 + 0.31796I 0
u = 0.179722 0.986918I
a = 0.207589 0.902053I
b = 0.369165 0.668249I
3.15064 0.31796I 0
u = 0.843840 + 0.510397I
a = 0.259951 0.265595I
b = 0.864185 + 0.337395I
4.98057 + 6.15682I 0
u = 0.843840 0.510397I
a = 0.259951 + 0.265595I
b = 0.864185 0.337395I
4.98057 6.15682I 0
u = 0.399420 + 0.898642I
a = 1.06991 2.30707I
b = 0.07605 1.75821I
7.58964 1.63836I 0
u = 0.399420 0.898642I
a = 1.06991 + 2.30707I
b = 0.07605 + 1.75821I
7.58964 + 1.63836I 0
u = 0.429893 + 0.940961I
a = 2.79308 2.27591I
b = 0.023408 1.309520I
2.33844 1.16139I 0
u = 0.429893 0.940961I
a = 2.79308 + 2.27591I
b = 0.023408 + 1.309520I
2.33844 + 1.16139I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.830555 + 0.488900I
a = 0.442225 + 0.331567I
b = 0.16770 + 1.41359I
4.74914 4.01083I 0
u = 0.830555 0.488900I
a = 0.442225 0.331567I
b = 0.16770 1.41359I
4.74914 + 4.01083I 0
u = 0.630106 + 0.842299I
a = 0.432588 0.361290I
b = 0.622284 0.227967I
3.97239 0.95647I 0
u = 0.630106 0.842299I
a = 0.432588 + 0.361290I
b = 0.622284 + 0.227967I
3.97239 + 0.95647I 0
u = 0.303925 + 0.883906I
a = 0.690866 1.050320I
b = 0.870665 0.383585I
0.163595 0.350353I 0
u = 0.303925 0.883906I
a = 0.690866 + 1.050320I
b = 0.870665 + 0.383585I
0.163595 + 0.350353I 0
u = 0.934821 + 0.515588I
a = 0.0267477 0.1090470I
b = 0.527513 0.109138I
4.74218 + 1.96042I 0
u = 0.934821 0.515588I
a = 0.0267477 + 0.1090470I
b = 0.527513 + 0.109138I
4.74218 1.96042I 0
u = 0.659420 + 0.849922I
a = 0.48497 1.38896I
b = 0.432084 0.317596I
3.96385 4.06799I 0
u = 0.659420 0.849922I
a = 0.48497 + 1.38896I
b = 0.432084 + 0.317596I
3.96385 + 4.06799I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.989911 + 0.422296I
a = 0.202342 0.690980I
b = 0.32715 1.45728I
0.76965 10.43430I 0
u = 0.989911 0.422296I
a = 0.202342 + 0.690980I
b = 0.32715 + 1.45728I
0.76965 + 10.43430I 0
u = 0.509665 + 0.956039I
a = 1.85319 + 2.97020I
b = 0.17312 + 1.44644I
1.80643 + 6.36048I 0
u = 0.509665 0.956039I
a = 1.85319 2.97020I
b = 0.17312 1.44644I
1.80643 6.36048I 0
u = 0.435143 + 1.013860I
a = 0.085209 + 0.808618I
b = 0.861923 0.018150I
0.79562 + 3.15505I 0
u = 0.435143 1.013860I
a = 0.085209 0.808618I
b = 0.861923 + 0.018150I
0.79562 3.15505I 0
u = 0.629756 + 0.623375I
a = 1.03801 + 1.27838I
b = 0.698651 + 0.940608I
3.26953 0.81616I 8.32679 + 0.51400I
u = 0.629756 0.623375I
a = 1.03801 1.27838I
b = 0.698651 0.940608I
3.26953 + 0.81616I 8.32679 0.51400I
u = 0.478152 + 1.028480I
a = 0.048348 + 0.408631I
b = 0.620681 0.234635I
0.64979 + 3.08848I 0
u = 0.478152 1.028480I
a = 0.048348 0.408631I
b = 0.620681 + 0.234635I
0.64979 3.08848I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.474736 + 0.723995I
a = 0.76434 + 1.28908I
b = 0.256829 + 1.358870I
1.02736 2.28684I 7.55737 1.92002I
u = 0.474736 0.723995I
a = 0.76434 1.28908I
b = 0.256829 1.358870I
1.02736 + 2.28684I 7.55737 + 1.92002I
u = 0.095485 + 1.136580I
a = 0.502266 0.275607I
b = 0.410820 0.500865I
1.23115 + 4.61547I 0
u = 0.095485 1.136580I
a = 0.502266 + 0.275607I
b = 0.410820 + 0.500865I
1.23115 4.61547I 0
u = 0.545977 + 1.014860I
a = 1.60168 + 1.42484I
b = 0.25443 + 1.49778I
6.23573 3.59828I 0
u = 0.545977 1.014860I
a = 1.60168 1.42484I
b = 0.25443 1.49778I
6.23573 + 3.59828I 0
u = 0.582278 + 0.996325I
a = 0.563794 + 0.223191I
b = 0.890522 + 0.862779I
2.13289 + 5.59350I 0
u = 0.582278 0.996325I
a = 0.563794 0.223191I
b = 0.890522 0.862779I
2.13289 5.59350I 0
u = 0.670483 + 0.483183I
a = 0.434095 + 0.052172I
b = 0.091326 + 1.398830I
4.69637 1.06019I 1.77167 + 3.37054I
u = 0.670483 0.483183I
a = 0.434095 0.052172I
b = 0.091326 1.398830I
4.69637 + 1.06019I 1.77167 3.37054I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.286414 + 0.770897I
a = 0.529133 + 0.340802I
b = 0.131537 1.082870I
1.66948 + 4.41582I 1.89095 7.51021I
u = 0.286414 0.770897I
a = 0.529133 0.340802I
b = 0.131537 + 1.082870I
1.66948 4.41582I 1.89095 + 7.51021I
u = 0.076124 + 1.176170I
a = 0.13232 2.63415I
b = 0.08777 1.53585I
10.45230 1.94264I 0
u = 0.076124 1.176170I
a = 0.13232 + 2.63415I
b = 0.08777 + 1.53585I
10.45230 + 1.94264I 0
u = 0.574941 + 1.029820I
a = 0.865274 0.836985I
b = 0.601944 0.367094I
0.73372 6.46640I 0
u = 0.574941 1.029820I
a = 0.865274 + 0.836985I
b = 0.601944 + 0.367094I
0.73372 + 6.46640I 0
u = 0.331830 + 1.139990I
a = 0.81647 + 2.00240I
b = 0.22724 + 1.48431I
6.59087 + 0.43258I 0
u = 0.331830 1.139990I
a = 0.81647 2.00240I
b = 0.22724 1.48431I
6.59087 0.43258I 0
u = 0.799696 + 0.881266I
a = 0.800094 + 0.035250I
b = 0.025687 1.228280I
1.67283 + 2.99269I 0
u = 0.799696 0.881266I
a = 0.800094 0.035250I
b = 0.025687 + 1.228280I
1.67283 2.99269I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.503300 + 1.113020I
a = 1.46906 1.97320I
b = 0.43026 1.43315I
5.46055 8.15782I 0
u = 0.503300 1.113020I
a = 1.46906 + 1.97320I
b = 0.43026 + 1.43315I
5.46055 + 8.15782I 0
u = 0.588221 + 0.492828I
a = 1.010850 + 0.219431I
b = 0.413424 0.322512I
0.78679 + 1.78171I 6.93161 4.77332I
u = 0.588221 0.492828I
a = 1.010850 0.219431I
b = 0.413424 + 0.322512I
0.78679 1.78171I 6.93161 + 4.77332I
u = 0.654044 + 1.088480I
a = 0.275617 + 1.042120I
b = 0.951503 + 0.450492I
3.22901 11.73080I 0
u = 0.654044 1.088480I
a = 0.275617 1.042120I
b = 0.951503 0.450492I
3.22901 + 11.73080I 0
u = 0.651187 + 1.101690I
a = 1.82390 + 1.46274I
b = 0.23240 + 1.44840I
6.58950 + 9.55660I 0
u = 0.651187 1.101690I
a = 1.82390 1.46274I
b = 0.23240 1.44840I
6.58950 9.55660I 0
u = 0.734204 + 1.069320I
a = 0.264381 0.642265I
b = 0.461381 0.424979I
3.10184 + 4.12640I 0
u = 0.734204 1.069320I
a = 0.264381 + 0.642265I
b = 0.461381 + 0.424979I
3.10184 4.12640I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.463474 + 0.499512I
a = 1.005840 0.131908I
b = 0.391996 0.381119I
0.906262 + 0.882340I 7.93772 5.58390I
u = 0.463474 0.499512I
a = 1.005840 + 0.131908I
b = 0.391996 + 0.381119I
0.906262 0.882340I 7.93772 + 5.58390I
u = 0.655837 + 0.159805I
a = 0.540689 0.181974I
b = 0.322778 1.352790I
2.86462 + 3.78073I 3.56597 3.81882I
u = 0.655837 0.159805I
a = 0.540689 + 0.181974I
b = 0.322778 + 1.352790I
2.86462 3.78073I 3.56597 + 3.81882I
u = 0.674571 + 1.175150I
a = 1.41651 1.82923I
b = 0.35663 1.51897I
3.0941 + 16.4594I 0
u = 0.674571 1.175150I
a = 1.41651 + 1.82923I
b = 0.35663 + 1.51897I
3.0941 16.4594I 0
u = 0.534948 + 1.254540I
a = 1.24467 1.97836I
b = 0.040134 1.286720I
3.56674 4.58685I 0
u = 0.534948 1.254540I
a = 1.24467 + 1.97836I
b = 0.040134 + 1.286720I
3.56674 + 4.58685I 0
u = 0.040521 + 1.392890I
a = 0.13926 + 2.26692I
b = 0.18547 + 1.46609I
7.50502 7.02191I 0
u = 0.040521 1.392890I
a = 0.13926 2.26692I
b = 0.18547 1.46609I
7.50502 + 7.02191I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.12911 + 0.85261I
a = 0.402883 0.940773I
b = 0.075532 1.274920I
1.39277 3.88492I 0
u = 1.12911 0.85261I
a = 0.402883 + 0.940773I
b = 0.075532 + 1.274920I
1.39277 + 3.88492I 0
u = 0.071474 + 0.574838I
a = 2.49648 + 0.24444I
b = 0.025774 0.381419I
0.98061 + 1.39590I 4.58324 5.64184I
u = 0.071474 0.574838I
a = 2.49648 0.24444I
b = 0.025774 + 0.381419I
0.98061 1.39590I 4.58324 + 5.64184I
u = 0.65986 + 1.27360I
a = 0.92752 + 2.00650I
b = 0.18093 + 1.46647I
3.02971 6.56618I 0
u = 0.65986 1.27360I
a = 0.92752 2.00650I
b = 0.18093 1.46647I
3.02971 + 6.56618I 0
u = 0.409048
a = 1.15285
b = 0.711871
1.45831 6.75650
12
II.
I
u
2
= h−2u
12
u
11
+· · ·+b2, u
13
2u
12
+· · ·+a3, u
14
+u
13
+· · ·+u+1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
9
=
u
13
+ 2u
12
+ ··· u + 3
2u
12
+ u
11
+ ··· u + 2
a
4
=
u
13
+ 3u
12
+ ··· u + 3
u
12
u
11
3u
10
2u
9
6u
8
4u
7
8u
6
3u
5
8u
4
3u
3
4u
2
2
a
10
=
3u
12
3u
11
+ ··· 4u 4
u
13
u
12
+ ··· + u 2
a
8
=
u
13
+ 2u
11
2u
10
+ 3u
9
4u
8
+ 3u
7
8u
6
+ 3u
5
8u
4
+ u
3
5u
2
+ 1
2u
12
+ u
11
+ ··· u + 2
a
7
=
u
13
+ u
12
+ ··· 4u
2
+ 1
2u
12
+ u
11
+ ··· u + 2
a
11
=
u
13
2u
12
+ ··· + 5u 2
u
13
+ 3u
11
+ 6u
9
+ 8u
7
u
6
+ 9u
5
2u
4
+ 6u
3
+ u + 1
a
11
=
u
13
2u
12
+ ··· + 5u 2
u
13
+ 3u
11
+ 6u
9
+ 8u
7
u
6
+ 9u
5
2u
4
+ 6u
3
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
13
3u
12
7u
11
7u
10
15u
9
13u
8
27u
7
15u
6
29u
5
11u
4
29u
3
2u
2
11u+4
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
u
13
+ ··· u + 1
c
2
u
14
+ 7u
13
+ ··· + 9u + 1
c
3
u
14
+ 2u
11
2u
10
+ 2u
8
6u
7
+ 4u
6
+ 2u
5
4u
4
+ 2u
3
+ u
2
2u + 1
c
4
u
14
+ 8u
12
+ ··· + 4u
2
+ 1
c
5
u
14
+ u
13
+ ··· + u + 1
c
6
u
14
2u
13
+ ··· 2u + 1
c
7
u
14
+ 3u
12
+ ··· + 4u
2
+ 1
c
8
, c
9
u
14
+ 8u
12
+ ··· + 4u
2
+ 1
c
10
u
14
+ 2u
13
+ ··· + 2u + 1
c
11
u
14
+ u
12
3u
11
2u
10
2u
9
+ u
8
+ 3u
7
+ 5u
6
+ u
5
+ u
4
2u
3
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
14
+ 7y
13
+ ··· + 9y + 1
c
2
y
14
+ 7y
13
+ ··· + 5y + 1
c
3
y
14
4y
12
+ ··· 2y + 1
c
4
, c
8
, c
9
y
14
+ 16y
13
+ ··· + 8y + 1
c
6
, c
10
y
14
12y
13
+ ··· 14y + 1
c
7
y
14
+ 6y
13
+ ··· + 8y + 1
c
11
y
14
+ 2y
13
+ ··· + 2y
2
+ 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.263802 + 0.940835I
a = 1.19274 + 2.28120I
b = 0.04502 + 1.68553I
8.10462 1.08865I 3.05079 1.27103I
u = 0.263802 0.940835I
a = 1.19274 2.28120I
b = 0.04502 1.68553I
8.10462 + 1.08865I 3.05079 + 1.27103I
u = 0.410511 + 1.042370I
a = 0.131453 + 0.695630I
b = 0.588176 0.305776I
0.04552 + 3.64299I 9.10899 6.17803I
u = 0.410511 1.042370I
a = 0.131453 0.695630I
b = 0.588176 + 0.305776I
0.04552 3.64299I 9.10899 + 6.17803I
u = 0.760930 + 0.850713I
a = 0.428317 + 0.669340I
b = 0.100644 + 0.531390I
3.68757 + 2.89359I 10.43723 2.39081I
u = 0.760930 0.850713I
a = 0.428317 0.669340I
b = 0.100644 0.531390I
3.68757 2.89359I 10.43723 + 2.39081I
u = 0.312796 + 0.732458I
a = 1.95777 1.12081I
b = 0.492123 0.518251I
1.193900 0.561188I 7.81743 1.40333I
u = 0.312796 0.732458I
a = 1.95777 + 1.12081I
b = 0.492123 + 0.518251I
1.193900 + 0.561188I 7.81743 + 1.40333I
u = 0.942798 + 0.813476I
a = 0.324386 + 0.502415I
b = 0.045526 + 1.274860I
0.85500 3.43645I 1.10715 + 2.59332I
u = 0.942798 0.813476I
a = 0.324386 0.502415I
b = 0.045526 1.274860I
0.85500 + 3.43645I 1.10715 2.59332I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.495691 + 1.193760I
a = 1.17726 2.37223I
b = 0.19941 1.40134I
4.20321 6.46120I 0.62933 + 6.25768I
u = 0.495691 1.193760I
a = 1.17726 + 2.37223I
b = 0.19941 + 1.40134I
4.20321 + 6.46120I 0.62933 6.25768I
u = 0.281944 + 0.557057I
a = 1.99922 0.82002I
b = 0.194314 1.267040I
1.60779 + 3.00668I 2.45066 4.48374I
u = 0.281944 0.557057I
a = 1.99922 + 0.82002I
b = 0.194314 + 1.267040I
1.60779 3.00668I 2.45066 + 4.48374I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
14
u
13
+ ··· u + 1)(u
77
+ 17u
75
+ ··· + 27u 19)
c
2
(u
14
+ 7u
13
+ ··· + 9u + 1)(u
77
+ 34u
76
+ ··· 5009u 361)
c
3
(u
14
+ 2u
11
2u
10
+ 2u
8
6u
7
+ 4u
6
+ 2u
5
4u
4
+ 2u
3
+ u
2
2u + 1)
· (u
77
+ 7u
76
+ ··· + 18u + 1)
c
4
(u
14
+ 8u
12
+ ··· + 4u
2
+ 1)(u
77
u
76
+ ··· + 6u 19)
c
5
(u
14
+ u
13
+ ··· + u + 1)(u
77
+ 17u
75
+ ··· + 27u 19)
c
6
(u
14
2u
13
+ ··· 2u + 1)(u
77
+ u
76
+ ··· + 420u 25)
c
7
(u
14
+ 3u
12
+ ··· + 4u
2
+ 1)(u
77
u
76
+ ··· + 138u 323)
c
8
, c
9
(u
14
+ 8u
12
+ ··· + 4u
2
+ 1)(u
77
u
76
+ ··· + 6u 19)
c
10
(u
14
+ 2u
13
+ ··· + 2u + 1)(u
77
+ u
76
+ ··· + 420u 25)
c
11
(u
14
+ u
12
3u
11
2u
10
2u
9
+ u
8
+ 3u
7
+ 5u
6
+ u
5
+ u
4
2u
3
+ 1)
· (u
77
+ 5u
76
+ ··· 282u 31)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
14
+ 7y
13
+ ··· + 9y + 1)(y
77
+ 34y
76
+ ··· 5009y 361)
c
2
(y
14
+ 7y
13
+ ··· + 5y + 1)(y
77
+ 26y
76
+ ··· + 3771587y 130321)
c
3
(y
14
4y
12
+ ··· 2y + 1)(y
77
y
76
+ ··· 142y 1)
c
4
, c
8
, c
9
(y
14
+ 16y
13
+ ··· + 8y + 1)(y
77
+ 75y
76
+ ··· 3156y 361)
c
6
, c
10
(y
14
12y
13
+ ··· 14y + 1)(y
77
49y
76
+ ··· + 40050y 625)
c
7
(y
14
+ 6y
13
+ ··· + 8y + 1)(y
77
+ 21y
76
+ ··· 3986156y 104329)
c
11
(y
14
+ 2y
13
+ ··· + 2y
2
+ 1)(y
77
3y
76
+ ··· + 22112y 961)
19