11a
127
(K11a
127
)
A knot diagram
1
Linearized knot diagam
5 1 10 8 2 9 3 11 7 4 6
Solving Sequence
2,5
6 1
3,8
4 7 11 9 10
c
5
c
1
c
2
c
4
c
7
c
11
c
8
c
10
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.48129 × 10
37
u
70
2.24416 × 10
37
u
69
+ ··· + 2.11503 × 10
37
b + 2.31427 × 10
37
,
1.02558 × 10
37
u
70
+ 1.31834 × 10
37
u
69
+ ··· + 9.61375 × 10
36
a 1.17173 × 10
37
, u
71
+ 2u
70
+ ··· 2u 1i
I
u
2
= hb, 3u
2
+ 5a 7u + 6, u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.48×10
37
u
70
2.24×10
37
u
69
+· · ·+2.12×10
37
b+2.31×10
37
, 1.03×
10
37
u
70
+1.32×10
37
u
69
+· · ·+9.61×10
36
a1.17×10
37
, u
71
+2u
70
+· · ·2u1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
8
=
1.06678u
70
1.37130u
69
+ ··· + 3.23612u + 1.21881
0.700363u
70
+ 1.06106u
69
+ ··· 0.692179u 1.09420
a
4
=
2.15925u
70
2.76790u
69
+ ··· + 1.95352u + 2.23161
0.0889259u
70
0.0397494u
69
+ ··· + 0.558128u 0.272953
a
7
=
0.0510485u
70
0.373547u
69
+ ··· + 2.27625u + 0.706786
1.65193u
70
+ 2.44250u
69
+ ··· 2.69769u 2.53117
a
11
=
u
3
u
5
u
3
+ u
a
9
=
1.48850u
70
2.21759u
69
+ ··· + 3.68765u + 1.74401
0.992194u
70
+ 1.60425u
69
+ ··· 2.38134u 1.45862
a
10
=
2.15925u
70
+ 2.76790u
69
+ ··· 1.95352u 2.23161
1.20977u
70
+ 1.41960u
69
+ ··· 0.383830u 1.82356
a
10
=
2.15925u
70
+ 2.76790u
69
+ ··· 1.95352u 2.23161
1.20977u
70
+ 1.41960u
69
+ ··· 0.383830u 1.82356
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.637188u
70
+ 2.00147u
69
+ ··· + 4.31419u 9.38239
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
71
+ 2u
70
+ ··· 2u 1
c
2
u
71
+ 36u
70
+ ··· + 4u + 1
c
3
, c
10
u
71
+ 2u
70
+ ··· 4u 1
c
4
u
71
3u
70
+ ··· + 660u + 200
c
6
, c
9
u
71
4u
70
+ ··· + 21u 25
c
7
5(5u
71
39u
70
+ ··· + 379583u + 94103)
c
8
5(5u
71
6u
70
+ ··· + 231980u 42881)
c
11
u
71
+ 6u
70
+ ··· 6402u 847
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
71
36y
70
+ ··· + 4y 1
c
2
y
71
+ 72y
69
+ ··· + 16y 1
c
3
, c
10
y
71
48y
70
+ ··· + 4y 1
c
4
y
71
+ 21y
70
+ ··· 606000y 40000
c
6
, c
9
y
71
58y
70
+ ··· + 79841y 625
c
7
25(25y
71
+ 959y
70
+ ··· 1.81656 × 10
11
y 8.85537 × 10
9
)
c
8
25(25y
71
936y
70
+ ··· + 3.67278 × 10
10
y 1.83878 × 10
9
)
c
11
y
71
+ 36y
70
+ ··· + 22222860y 717409
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.756248 + 0.731356I
a = 0.319350 0.556979I
b = 0.609727 + 0.867860I
4.07719 3.90151I 5.00000 + 3.54699I
u = 0.756248 0.731356I
a = 0.319350 + 0.556979I
b = 0.609727 0.867860I
4.07719 + 3.90151I 5.00000 3.54699I
u = 0.815711 + 0.480281I
a = 0.851857 + 0.985100I
b = 0.795395 0.523783I
0.567421 0.429034I 3.85529 0.87645I
u = 0.815711 0.480281I
a = 0.851857 0.985100I
b = 0.795395 + 0.523783I
0.567421 + 0.429034I 3.85529 + 0.87645I
u = 0.270630 + 0.894068I
a = 0.243231 + 0.020060I
b = 0.051628 0.966961I
7.01345 + 0.86966I 12.36097 1.34990I
u = 0.270630 0.894068I
a = 0.243231 0.020060I
b = 0.051628 + 0.966961I
7.01345 0.86966I 12.36097 + 1.34990I
u = 0.916597 + 0.577342I
a = 0.034897 0.799407I
b = 0.811438 + 0.019369I
1.66910 3.91281I 0
u = 0.916597 0.577342I
a = 0.034897 + 0.799407I
b = 0.811438 0.019369I
1.66910 + 3.91281I 0
u = 0.836576 + 0.691781I
a = 0.894496 + 0.459599I
b = 0.799336 + 0.956428I
4.32946 + 9.25395I 0
u = 0.836576 0.691781I
a = 0.894496 0.459599I
b = 0.799336 0.956428I
4.32946 9.25395I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.222287 + 0.874807I
a = 0.288795 + 0.326260I
b = 0.664290 + 0.919235I
2.91874 + 5.72330I 6.82100 5.17076I
u = 0.222287 0.874807I
a = 0.288795 0.326260I
b = 0.664290 0.919235I
2.91874 5.72330I 6.82100 + 5.17076I
u = 0.730824 + 0.527079I
a = 0.753832 0.354136I
b = 0.968868 0.896754I
0.33023 + 4.59723I 4.06867 6.98717I
u = 0.730824 0.527079I
a = 0.753832 + 0.354136I
b = 0.968868 + 0.896754I
0.33023 4.59723I 4.06867 + 6.98717I
u = 0.852440 + 0.278118I
a = 0.491553 + 0.803598I
b = 0.441660 + 1.237110I
4.80199 3.21094I 12.45295 + 5.85076I
u = 0.852440 0.278118I
a = 0.491553 0.803598I
b = 0.441660 1.237110I
4.80199 + 3.21094I 12.45295 5.85076I
u = 0.234589 + 0.853865I
a = 0.554053 0.463968I
b = 1.02317 1.27672I
7.77113 11.46490I 8.41846 + 5.96289I
u = 0.234589 0.853865I
a = 0.554053 + 0.463968I
b = 1.02317 + 1.27672I
7.77113 + 11.46490I 8.41846 5.96289I
u = 0.640616 + 0.584471I
a = 0.569021 + 0.397714I
b = 0.836952 + 0.262697I
2.46408 0.68931I 1.74747 + 0.77475I
u = 0.640616 0.584471I
a = 0.569021 0.397714I
b = 0.836952 0.262697I
2.46408 + 0.68931I 1.74747 0.77475I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.859660
a = 0.477948
b = 1.49255
6.41668 15.8580
u = 1.099450 + 0.364554I
a = 0.87164 1.32285I
b = 0.420596 0.906615I
2.63013 + 1.09669I 0
u = 1.099450 0.364554I
a = 0.87164 + 1.32285I
b = 0.420596 + 0.906615I
2.63013 1.09669I 0
u = 1.087730 + 0.413641I
a = 1.09893 + 2.35531I
b = 0.001207 + 0.597493I
5.31037 3.59883I 0
u = 1.087730 0.413641I
a = 1.09893 2.35531I
b = 0.001207 0.597493I
5.31037 + 3.59883I 0
u = 0.862289 + 0.799421I
a = 0.285568 0.061148I
b = 0.121059 0.469128I
1.15814 2.98237I 0
u = 0.862289 0.799421I
a = 0.285568 + 0.061148I
b = 0.121059 + 0.469128I
1.15814 + 2.98237I 0
u = 1.145320 + 0.357313I
a = 1.92585 + 1.99482I
b = 0.70820 + 1.75526I
6.26433 + 2.00466I 0
u = 1.145320 0.357313I
a = 1.92585 1.99482I
b = 0.70820 1.75526I
6.26433 2.00466I 0
u = 1.130980 + 0.431488I
a = 0.67778 + 1.92019I
b = 0.795242 + 0.439034I
5.35777 2.76405I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.130980 0.431488I
a = 0.67778 1.92019I
b = 0.795242 0.439034I
5.35777 + 2.76405I 0
u = 1.115380 + 0.489220I
a = 1.63469 + 1.22563I
b = 0.059678 + 0.565014I
4.70142 + 3.83162I 0
u = 1.115380 0.489220I
a = 1.63469 1.22563I
b = 0.059678 0.565014I
4.70142 3.83162I 0
u = 1.137430 + 0.466202I
a = 0.643935 + 0.898772I
b = 0.720960 + 0.704286I
5.10323 + 5.09404I 0
u = 1.137430 0.466202I
a = 0.643935 0.898772I
b = 0.720960 0.704286I
5.10323 5.09404I 0
u = 1.162180 + 0.422674I
a = 0.53999 3.04221I
b = 1.93986 1.22986I
10.03050 + 1.73926I 0
u = 1.162180 0.422674I
a = 0.53999 + 3.04221I
b = 1.93986 + 1.22986I
10.03050 1.73926I 0
u = 1.131850 + 0.517529I
a = 0.60956 1.99402I
b = 0.809979 0.884446I
1.51520 6.56162I 0
u = 1.131850 0.517529I
a = 0.60956 + 1.99402I
b = 0.809979 + 0.884446I
1.51520 + 6.56162I 0
u = 0.201597 + 0.723825I
a = 0.407018 + 0.472911I
b = 0.99003 + 1.51453I
2.41749 5.42731I 7.02359 + 6.01187I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.201597 0.723825I
a = 0.407018 0.472911I
b = 0.99003 1.51453I
2.41749 + 5.42731I 7.02359 6.01187I
u = 1.163000 + 0.468877I
a = 2.63024 0.30133I
b = 1.65868 1.64014I
9.70369 6.52499I 0
u = 1.163000 0.468877I
a = 2.63024 + 0.30133I
b = 1.65868 + 1.64014I
9.70369 + 6.52499I 0
u = 0.686936 + 0.290469I
a = 0.31194 1.46125I
b = 0.142451 0.714960I
1.21269 + 1.32793I 6.02554 4.52788I
u = 0.686936 0.290469I
a = 0.31194 + 1.46125I
b = 0.142451 + 0.714960I
1.21269 1.32793I 6.02554 + 4.52788I
u = 1.152790 + 0.514748I
a = 0.96659 + 2.88563I
b = 1.14061 + 1.68141I
5.16670 + 10.10120I 0
u = 1.152790 0.514748I
a = 0.96659 2.88563I
b = 1.14061 1.68141I
5.16670 10.10120I 0
u = 0.736745
a = 1.06563
b = 0.319467
1.23735 7.42040
u = 0.254623 + 0.682236I
a = 0.490596 0.464241I
b = 0.733828 0.705892I
1.01632 + 1.94893I 0.27362 2.41499I
u = 0.254623 0.682236I
a = 0.490596 + 0.464241I
b = 0.733828 + 0.705892I
1.01632 1.94893I 0.27362 + 2.41499I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.237750 + 0.293203I
a = 1.24533 1.57655I
b = 0.89711 1.37506I
12.4694 + 7.7567I 0
u = 1.237750 0.293203I
a = 1.24533 + 1.57655I
b = 0.89711 + 1.37506I
12.4694 7.7567I 0
u = 1.253530 + 0.263632I
a = 0.02040 1.47913I
b = 0.199889 1.201490I
12.02620 4.54379I 0
u = 1.253530 0.263632I
a = 0.02040 + 1.47913I
b = 0.199889 + 1.201490I
12.02620 + 4.54379I 0
u = 1.256850 + 0.294449I
a = 0.74295 + 1.21599I
b = 0.466074 + 1.044560I
7.69010 1.87443I 0
u = 1.256850 0.294449I
a = 0.74295 1.21599I
b = 0.466074 1.044560I
7.69010 + 1.87443I 0
u = 0.066183 + 0.695054I
a = 0.405710 0.249698I
b = 1.56121 1.32211I
6.61162 + 2.20383I 12.68569 3.07320I
u = 0.066183 0.695054I
a = 0.405710 + 0.249698I
b = 1.56121 + 1.32211I
6.61162 2.20383I 12.68569 + 3.07320I
u = 1.186700 + 0.559365I
a = 0.89022 2.40681I
b = 1.10234 1.33333I
10.6184 + 16.6559I 0
u = 1.186700 0.559365I
a = 0.89022 + 2.40681I
b = 1.10234 + 1.33333I
10.6184 16.6559I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.196320 + 0.559287I
a = 0.61509 + 1.75869I
b = 0.769209 + 1.018600I
5.84600 10.96250I 0
u = 1.196320 0.559287I
a = 0.61509 1.75869I
b = 0.769209 1.018600I
5.84600 + 10.96250I 0
u = 1.198020 + 0.580415I
a = 1.025910 0.879632I
b = 0.129045 1.023280I
9.82778 + 4.53798I 0
u = 1.198020 0.580415I
a = 1.025910 + 0.879632I
b = 0.129045 + 1.023280I
9.82778 4.53798I 0
u = 0.654099
a = 2.68619
b = 0.513194
2.37176 2.33790
u = 0.198330 + 0.594187I
a = 1.51239 + 0.35999I
b = 0.082687 + 0.549338I
2.17011 + 0.43018I 7.12298 + 0.05912I
u = 0.198330 0.594187I
a = 1.51239 0.35999I
b = 0.082687 0.549338I
2.17011 0.43018I 7.12298 0.05912I
u = 0.083118 + 0.598548I
a = 0.90282 + 1.22203I
b = 0.575442 + 0.552054I
2.24291 0.96732I 4.89699 0.16722I
u = 0.083118 0.598548I
a = 0.90282 1.22203I
b = 0.575442 0.552054I
2.24291 + 0.96732I 4.89699 + 0.16722I
u = 0.432980 + 0.381803I
a = 6.48861 + 2.17280I
b = 0.351355 + 0.254773I
3.41757 + 0.22703I 4.7786 + 20.3751I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.432980 0.381803I
a = 6.48861 2.17280I
b = 0.351355 0.254773I
3.41757 0.22703I 4.7786 20.3751I
12
II. I
u
2
= hb, 3u
2
+ 5a 7u + 6, u
3
u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
1
=
u
u
a
3
=
u
2
+ 1
u
2
+ u + 1
a
8
=
3
5
u
2
+
7
5
u
6
5
0
a
4
=
1
0
a
7
=
2
5
u
2
+
8
5
u
4
5
2
5
u
2
+
2
5
u
1
5
a
11
=
u
2
1
u
2
a
9
=
2
5
u
2
+
8
5
u
9
5
3
5
u
2
+
2
5
u
1
5
a
10
=
1
u
2
a
10
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
277
25
u
2
+
293
25
u
119
25
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
1
c
2
, c
3
u
3
+ u
2
+ 2u + 1
c
4
u
3
c
5
u
3
u
2
+ 1
c
6
(u 1)
3
c
7
5(5u
3
4u
2
+ u 1)
c
8
5(5u
3
11u
2
+ 6u 1)
c
9
(u + 1)
3
c
10
u
3
u
2
+ 2u 1
c
11
u
3
+ 3u
2
+ 2u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
3
y
2
+ 2y 1
c
2
, c
3
, c
10
y
3
+ 3y
2
+ 2y 1
c
4
y
3
c
6
, c
9
(y 1)
3
c
7
25(25y
3
6y
2
7y 1)
c
8
25(25y
3
61y
2
+ 14y 1)
c
11
y
3
5y
2
+ 10y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.100634 + 0.258522I
b = 0
1.37919 2.82812I 3.14050 5.75335I
u = 0.877439 0.744862I
a = 0.100634 0.258522I
b = 0
1.37919 + 2.82812I 3.14050 + 5.75335I
u = 0.754878
a = 2.59873
b = 0
2.75839 19.9210
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)(u
71
+ 2u
70
+ ··· 2u 1)
c
2
(u
3
+ u
2
+ 2u + 1)(u
71
+ 36u
70
+ ··· + 4u + 1)
c
3
(u
3
+ u
2
+ 2u + 1)(u
71
+ 2u
70
+ ··· 4u 1)
c
4
u
3
(u
71
3u
70
+ ··· + 660u + 200)
c
5
(u
3
u
2
+ 1)(u
71
+ 2u
70
+ ··· 2u 1)
c
6
((u 1)
3
)(u
71
4u
70
+ ··· + 21u 25)
c
7
25(5u
3
4u
2
+ u 1)(5u
71
39u
70
+ ··· + 379583u + 94103)
c
8
25(5u
3
11u
2
+ 6u 1)(5u
71
6u
70
+ ··· + 231980u 42881)
c
9
((u + 1)
3
)(u
71
4u
70
+ ··· + 21u 25)
c
10
(u
3
u
2
+ 2u 1)(u
71
+ 2u
70
+ ··· 4u 1)
c
11
(u
3
+ 3u
2
+ 2u 1)(u
71
+ 6u
70
+ ··· 6402u 847)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
3
y
2
+ 2y 1)(y
71
36y
70
+ ··· + 4y 1)
c
2
(y
3
+ 3y
2
+ 2y 1)(y
71
+ 72y
69
+ ··· + 16y 1)
c
3
, c
10
(y
3
+ 3y
2
+ 2y 1)(y
71
48y
70
+ ··· + 4y 1)
c
4
y
3
(y
71
+ 21y
70
+ ··· 606000y 40000)
c
6
, c
9
((y 1)
3
)(y
71
58y
70
+ ··· + 79841y 625)
c
7
625(25y
3
6y
2
7y 1)
· (25y
71
+ 959y
70
+ ··· 181655598053y 8855374609)
c
8
625(25y
3
61y
2
+ 14y 1)
· (25y
71
936y
70
+ ··· + 36727842568y 1838780161)
c
11
(y
3
5y
2
+ 10y 1)(y
71
+ 36y
70
+ ··· + 2.22229 × 10
7
y 717409)
18