11a
129
(K11a
129
)
A knot diagram
1
Linearized knot diagam
6 1 10 11 2 9 3 5 7 4 8
Solving Sequence
3,10
4 11
5,8
1 2 7 9 6
c
3
c
10
c
4
c
11
c
2
c
7
c
9
c
6
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h3.90365 × 10
58
u
58
+ 1.01441 × 10
59
u
57
+ ··· + 8.38498 × 10
58
b 3.01985 × 10
57
,
7.15963 × 10
59
u
58
+ 1.21631 × 10
60
u
57
+ ··· + 9.22348 × 10
59
a 2.03520 × 10
59
, u
59
+ 2u
58
+ ··· + 5u
2
1i
I
u
2
= h4u
2
+ 7b + 2u 1, 3u
2
+ 7a + 5u + 1, u
3
+ u
2
1i
* 2 irreducible components of dim
C
= 0, with total 62 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h3.90×10
58
u
58
+1.01×10
59
u
57
+· · ·+8.38×10
58
b3.02×10
57
, 7.16×10
59
u
58
+
1.22 × 10
60
u
57
+ · · · + 9.22 × 10
59
a 2.04 × 10
59
, u
59
+ 2u
58
+ · · · + 5u
2
1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
8
=
0.776240u
58
1.31871u
57
+ ··· 5.39605u + 0.220655
0.465552u
58
1.20979u
57
+ ··· 0.0812092u + 0.0360150
a
1
=
0.239979u
58
+ 0.405379u
57
+ ··· 1.25169u 0.147253
0.137513u
58
0.253368u
57
+ ··· 1.66158u + 0.0969722
a
2
=
0.166747u
58
+ 0.266603u
57
+ ··· + 0.146341u + 0.989129
0.000963728u
58
0.0132996u
57
+ ··· + 0.189286u 0.00637696
a
7
=
1.24179u
58
2.52850u
57
+ ··· 5.47726u + 0.256670
0.465552u
58
1.20979u
57
+ ··· 0.0812092u + 0.0360150
a
9
=
1.16012u
58
2.33933u
57
+ ··· 5.42935u + 0.193474
0.485917u
58
1.19021u
57
+ ··· + 1.07906u + 0.0222353
a
6
=
0.225910u
58
0.512221u
57
+ ··· 0.169913u + 0.169646
0.0153499u
58
0.101739u
57
+ ··· 1.19569u + 0.0827941
a
6
=
0.225910u
58
0.512221u
57
+ ··· 0.169913u + 0.169646
0.0153499u
58
0.101739u
57
+ ··· 1.19569u + 0.0827941
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.22898u
58
6.33023u
57
+ ··· 0.906990u + 1.85953
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
59
2u
58
+ ··· 4u + 1
c
2
u
59
+ 24u
58
+ ··· + 10u 1
c
3
, c
4
, c
10
u
59
2u
58
+ ··· 5u
2
+ 1
c
6
, c
9
u
59
+ 4u
58
+ ··· 257u + 49
c
7
7(7u
59
22u
58
+ ··· 126239u + 81841)
c
8
7(7u
59
6u
58
+ ··· + 6234u + 1903)
c
11
u
59
+ 5u
58
+ ··· 868u + 392
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
59
+ 24y
58
+ ··· + 10y 1
c
2
y
59
+ 24y
58
+ ··· + 462y 1
c
3
, c
4
, c
10
y
59
60y
58
+ ··· + 10y 1
c
6
, c
9
y
59
50y
58
+ ··· + 74183y 2401
c
7
49(49y
59
+ 3394y
58
+ ··· 9.08304 × 10
10
y 6.69795 × 10
9
)
c
8
49(49y
59
64y
58
+ ··· + 2.29562 × 10
8
y 3621409)
c
11
y
59
+ 21y
58
+ ··· 2147376y 153664
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.622068 + 0.787958I
a = 0.481268 + 0.468907I
b = 0.71713 1.28444I
4.44674 + 11.62550I 0
u = 0.622068 0.787958I
a = 0.481268 0.468907I
b = 0.71713 + 1.28444I
4.44674 11.62550I 0
u = 0.506194 + 0.887762I
a = 0.672945 0.231781I
b = 0.249130 0.995558I
4.02435 6.11409I 0
u = 0.506194 0.887762I
a = 0.672945 + 0.231781I
b = 0.249130 + 0.995558I
4.02435 + 6.11409I 0
u = 0.857653 + 0.464032I
a = 0.033575 + 0.146733I
b = 0.707909 0.257892I
1.83113 + 3.37489I 0. 6.31964I
u = 0.857653 0.464032I
a = 0.033575 0.146733I
b = 0.707909 + 0.257892I
1.83113 3.37489I 0. + 6.31964I
u = 0.627541 + 0.812622I
a = 0.518848 + 0.363833I
b = 0.548211 1.240870I
6.17346 5.56581I 0
u = 0.627541 0.812622I
a = 0.518848 0.363833I
b = 0.548211 + 1.240870I
6.17346 + 5.56581I 0
u = 0.970195
a = 0.167848
b = 0.593313
1.61678 5.00000
u = 0.555862 + 0.900899I
a = 0.619428 0.061218I
b = 0.036940 1.051180I
5.85876 0.11889I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.555862 0.900899I
a = 0.619428 + 0.061218I
b = 0.036940 + 1.051180I
5.85876 + 0.11889I 0
u = 0.741521 + 0.922413I
a = 0.318033 + 0.111847I
b = 0.354088 0.782867I
1.23742 + 3.26694I 0
u = 0.741521 0.922413I
a = 0.318033 0.111847I
b = 0.354088 + 0.782867I
1.23742 3.26694I 0
u = 0.444629 + 0.510368I
a = 0.46434 1.56907I
b = 0.808317 + 0.689154I
0.33205 + 6.44214I 4.62600 9.28024I
u = 0.444629 0.510368I
a = 0.46434 + 1.56907I
b = 0.808317 0.689154I
0.33205 6.44214I 4.62600 + 9.28024I
u = 0.313615 + 0.597705I
a = 0.041562 1.003380I
b = 0.545415 + 0.167871I
3.28171 + 0.39501I 2.00061 1.54672I
u = 0.313615 0.597705I
a = 0.041562 + 1.003380I
b = 0.545415 0.167871I
3.28171 0.39501I 2.00061 + 1.54672I
u = 0.418675 + 0.447852I
a = 0.77452 1.30125I
b = 0.552817 + 0.774161I
0.92823 1.58622I 7.27802 + 5.02607I
u = 0.418675 0.447852I
a = 0.77452 + 1.30125I
b = 0.552817 0.774161I
0.92823 + 1.58622I 7.27802 5.02607I
u = 0.556478 + 0.207218I
a = 2.56199 0.99726I
b = 0.135387 + 0.940443I
3.71804 4.17211I 12.3249 + 7.4178I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.556478 0.207218I
a = 2.56199 + 0.99726I
b = 0.135387 0.940443I
3.71804 + 4.17211I 12.3249 7.4178I
u = 0.559723 + 0.140117I
a = 2.77388 0.66591I
b = 0.244493 + 0.672850I
4.05953 0.76565I 13.67462 0.08522I
u = 0.559723 0.140117I
a = 2.77388 + 0.66591I
b = 0.244493 0.672850I
4.05953 + 0.76565I 13.67462 + 0.08522I
u = 0.423114 + 0.391843I
a = 0.472532 + 0.185081I
b = 0.957559 + 0.540672I
0.25044 3.21979I 3.90025 + 0.90131I
u = 0.423114 0.391843I
a = 0.472532 0.185081I
b = 0.957559 0.540672I
0.25044 + 3.21979I 3.90025 0.90131I
u = 1.42183 + 0.07250I
a = 1.57296 1.41800I
b = 1.32202 + 1.36648I
5.48223 + 1.81992I 0
u = 1.42183 0.07250I
a = 1.57296 + 1.41800I
b = 1.32202 1.36648I
5.48223 1.81992I 0
u = 1.44289 + 0.04366I
a = 0.12384 3.55457I
b = 0.75861 + 3.44954I
6.34398 + 2.28663I 0
u = 1.44289 0.04366I
a = 0.12384 + 3.55457I
b = 0.75861 3.44954I
6.34398 2.28663I 0
u = 1.44268 + 0.15844I
a = 0.095089 1.313110I
b = 0.121163 + 0.706508I
2.38922 3.00723I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44268 0.15844I
a = 0.095089 + 1.313110I
b = 0.121163 0.706508I
2.38922 + 3.00723I 0
u = 1.45554 + 0.08236I
a = 0.41802 2.00373I
b = 0.05710 + 1.65402I
6.50215 + 2.38989I 0
u = 1.45554 0.08236I
a = 0.41802 + 2.00373I
b = 0.05710 1.65402I
6.50215 2.38989I 0
u = 1.48770
a = 0.815446
b = 1.74556
8.30655 0
u = 1.49253 + 0.12922I
a = 0.04923 1.94060I
b = 0.422930 + 1.117500I
7.23997 + 3.63562I 0
u = 1.49253 0.12922I
a = 0.04923 + 1.94060I
b = 0.422930 1.117500I
7.23997 3.63562I 0
u = 1.49781 + 0.14706I
a = 0.27642 1.94523I
b = 0.530534 + 1.009310I
6.06759 8.77463I 0
u = 1.49781 0.14706I
a = 0.27642 + 1.94523I
b = 0.530534 1.009310I
6.06759 + 8.77463I 0
u = 1.52791 + 0.03503I
a = 0.720143 1.079900I
b = 0.482971 + 0.730580I
11.01860 + 0.16153I 0
u = 1.52791 0.03503I
a = 0.720143 + 1.079900I
b = 0.482971 0.730580I
11.01860 0.16153I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.52787 + 0.04986I
a = 0.71061 1.45487I
b = 0.434084 + 0.962095I
10.66650 + 5.04841I 0
u = 1.52787 0.04986I
a = 0.71061 + 1.45487I
b = 0.434084 0.962095I
10.66650 5.04841I 0
u = 0.304004 + 0.352318I
a = 0.725827 + 0.031622I
b = 0.401580 + 1.001260I
0.818669 1.086870I 6.95263 + 5.92982I
u = 0.304004 0.352318I
a = 0.725827 0.031622I
b = 0.401580 1.001260I
0.818669 + 1.086870I 6.95263 5.92982I
u = 0.336012 + 0.317334I
a = 1.151780 0.392616I
b = 0.165774 + 0.934262I
0.674447 1.055540I 6.88917 + 6.16079I
u = 0.336012 0.317334I
a = 1.151780 + 0.392616I
b = 0.165774 0.934262I
0.674447 + 1.055540I 6.88917 6.16079I
u = 1.57375 + 0.26330I
a = 0.02665 + 1.87772I
b = 0.97014 1.69830I
11.6590 15.5089I 0
u = 1.57375 0.26330I
a = 0.02665 1.87772I
b = 0.97014 + 1.69830I
11.6590 + 15.5089I 0
u = 1.57863 + 0.26847I
a = 0.12971 + 1.73446I
b = 0.85618 1.61480I
13.4212 + 9.5497I 0
u = 1.57863 0.26847I
a = 0.12971 1.73446I
b = 0.85618 + 1.61480I
13.4212 9.5497I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.59529 + 0.29735I
a = 0.350459 + 1.145760I
b = 0.534635 1.221130I
12.98450 + 4.58039I 0
u = 1.59529 0.29735I
a = 0.350459 1.145760I
b = 0.534635 + 1.221130I
12.98450 4.58039I 0
u = 1.60262 + 0.26158I
a = 0.106004 + 1.357480I
b = 0.94318 1.26607I
6.48770 7.42956I 0
u = 1.60262 0.26158I
a = 0.106004 1.357480I
b = 0.94318 + 1.26607I
6.48770 + 7.42956I 0
u = 1.59529 + 0.32218I
a = 0.428036 + 0.868477I
b = 0.397894 1.029760I
10.90240 + 1.52833I 0
u = 1.59529 0.32218I
a = 0.428036 0.868477I
b = 0.397894 + 1.029760I
10.90240 1.52833I 0
u = 0.046856 + 0.362935I
a = 0.240879 + 0.681944I
b = 0.04832 + 2.41526I
2.15381 + 2.27881I 7.94357 + 3.32360I
u = 0.046856 0.362935I
a = 0.240879 0.681944I
b = 0.04832 2.41526I
2.15381 2.27881I 7.94357 3.32360I
u = 0.349995
a = 2.41073
b = 0.734856
2.11871 0.678540
10
II. I
u
2
= h4u
2
+ 7b + 2u 1, 3u
2
+ 7a + 5u + 1, u
3
+ u
2
1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
2
+ u 1
a
5
=
u
2
+ 1
u
2
+ u 1
a
8
=
3
7
u
2
5
7
u
1
7
4
7
u
2
2
7
u +
1
7
a
1
=
u
u
2
+ u 1
a
2
=
u
2u
2
+ u 2
a
7
=
u
2
u
4
7
u
2
2
7
u +
1
7
a
9
=
u
2
u
4
7
u
2
+
5
7
u +
1
7
a
6
=
0
u
a
6
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
313
49
u
2
+
188
49
u +
424
49
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
+ 2u + 1
c
2
u
3
+ 3u
2
+ 2u 1
c
3
, c
4
u
3
+ u
2
1
c
5
u
3
u
2
+ 2u 1
c
6
(u + 1)
3
c
7
7(7u
3
+ u
2
+ u 1)
c
8
7(7u
3
u
2
4u 1)
c
9
(u 1)
3
c
10
u
3
u
2
+ 1
c
11
u
3
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
3
+ 3y
2
+ 2y 1
c
2
y
3
5y
2
+ 10y 1
c
3
, c
4
, c
10
y
3
y
2
+ 2y 1
c
6
, c
9
(y 1)
3
c
7
49(49y
3
+ 13y
2
+ 3y 1)
c
8
49(49y
3
57y
2
+ 14y 1)
c
11
y
3
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.391708 + 0.028159I
b = 0.270651 + 0.534120I
1.37919 2.82812I 6.66044 5.49186I
u = 0.877439 0.744862I
a = 0.391708 0.028159I
b = 0.270651 0.534120I
1.37919 + 2.82812I 6.66044 + 5.49186I
u = 0.754878
a = 0.926273
b = 0.398445
2.75839 15.1890
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
+ 2u + 1)(u
59
2u
58
+ ··· 4u + 1)
c
2
(u
3
+ 3u
2
+ 2u 1)(u
59
+ 24u
58
+ ··· + 10u 1)
c
3
, c
4
(u
3
+ u
2
1)(u
59
2u
58
+ ··· 5u
2
+ 1)
c
5
(u
3
u
2
+ 2u 1)(u
59
2u
58
+ ··· 4u + 1)
c
6
((u + 1)
3
)(u
59
+ 4u
58
+ ··· 257u + 49)
c
7
49(7u
3
+ u
2
+ u 1)(7u
59
22u
58
+ ··· 126239u + 81841)
c
8
49(7u
3
u
2
4u 1)(7u
59
6u
58
+ ··· + 6234u + 1903)
c
9
((u 1)
3
)(u
59
+ 4u
58
+ ··· 257u + 49)
c
10
(u
3
u
2
+ 1)(u
59
2u
58
+ ··· 5u
2
+ 1)
c
11
u
3
(u
59
+ 5u
58
+ ··· 868u + 392)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
3
+ 3y
2
+ 2y 1)(y
59
+ 24y
58
+ ··· + 10y 1)
c
2
(y
3
5y
2
+ 10y 1)(y
59
+ 24y
58
+ ··· + 462y 1)
c
3
, c
4
, c
10
(y
3
y
2
+ 2y 1)(y
59
60y
58
+ ··· + 10y 1)
c
6
, c
9
((y 1)
3
)(y
59
50y
58
+ ··· + 74183y 2401)
c
7
2401(49y
3
+ 13y
2
+ 3y 1)
· (49y
59
+ 3394y
58
+ ··· 90830373521y 6697949281)
c
8
2401(49y
3
57y
2
+ 14y 1)
· (49y
59
64y
58
+ ··· + 229562386y 3621409)
c
11
y
3
(y
59
+ 21y
58
+ ··· 2147376y 153664)
16