11a
134
(K11a
134
)
A knot diagram
1
Linearized knot diagam
5 1 9 7 2 11 4 3 8 6 10
Solving Sequence
4,9 1,3
2 8 10 7 5 11 6
c
3
c
2
c
8
c
9
c
7
c
4
c
11
c
6
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2u
27
5u
26
+ ··· + b 5, 5u
27
11u
26
+ ··· + 2a 10, u
28
+ 3u
27
+ ··· + 6u + 2i
I
u
2
= h2u
19
a + 292u
19
+ ··· 19a + 450, 2u
19
a + u
19
+ ··· 4a + 1, u
20
u
19
+ ··· + 2u 1i
I
u
3
= hu
3
+ b u 1, u
3
+ 2u
2
+ 2a 4, u
4
2u
2
+ 2i
I
v
1
= ha, b + 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 73 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−2u
27
5u
26
+· · ·+b5, 5u
27
11u
26
+· · ·+2a10, u
28
+3u
27
+· · ·+6u+2i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
1
=
5
2
u
27
+
11
2
u
26
+ ··· + 11u + 5
2u
27
+ 5u
26
+ ··· + 11u + 5
a
3
=
1
u
2
a
2
=
3
2
u
27
7
2
u
26
+ ··· 7u 2
u
27
3u
26
+ ··· 7u 3
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
u
3
+ u
a
7
=
u
3
u
3
+ u
a
5
=
u
6
u
4
+ 1
u
6
2u
4
+ u
2
a
11
=
3
2
u
27
+
7
2
u
26
+ ··· + 7u + 3
u
27
+ 3u
26
+ ··· + 6u + 3
a
6
=
3
2
u
27
+
7
2
u
26
+ ··· + 7u + 3
u
27
2u
26
+ ··· 3u 1
a
6
=
3
2
u
27
+
7
2
u
26
+ ··· + 7u + 3
u
27
2u
26
+ ··· 3u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 16u
27
+ 34u
26
80u
25
254u
24
+ 90u
23
+ 816u
22
+ 388u
21
1304u
20
1582u
19
+
636u
18
+ 2460u
17
+ 1314u
16
1448u
15
2534u
14
826u
13
+ 1418u
12
+ 1758u
11
+
426u
10
722u
9
752u
8
194u
7
+ 132u
6
+ 96u
5
4u
4
+ 10u
3
+ 68u
2
+ 70u + 24
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
u
28
+ u
27
+ ··· 5u
2
+ 1
c
2
, c
11
u
28
+ 11u
27
+ ··· + 10u + 1
c
3
, c
8
u
28
3u
27
+ ··· 6u + 2
c
4
, c
7
u
28
9u
27
+ ··· 118u + 14
c
9
u
28
15u
27
+ ··· 4u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
y
28
11y
27
+ ··· 10y + 1
c
2
, c
11
y
28
+ 21y
27
+ ··· 6y + 1
c
3
, c
8
y
28
15y
27
+ ··· 4y + 4
c
4
, c
7
y
28
+ 21y
27
+ ··· + 2092y + 196
c
9
y
28
3y
27
+ ··· + 112y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.921184 + 0.300728I
a = 0.870295 0.372461I
b = 0.659106 0.511462I
1.56197 1.13269I 1.72628 + 0.97911I
u = 0.921184 0.300728I
a = 0.870295 + 0.372461I
b = 0.659106 + 0.511462I
1.56197 + 1.13269I 1.72628 0.97911I
u = 0.879043 + 0.588894I
a = 1.46570 + 0.82867I
b = 0.651267 + 0.638133I
2.48501 9.60327I 7.71691 + 9.77284I
u = 0.879043 0.588894I
a = 1.46570 0.82867I
b = 0.651267 0.638133I
2.48501 + 9.60327I 7.71691 9.77284I
u = 0.644981 + 0.626187I
a = 0.089635 + 0.895732I
b = 0.092830 + 1.067970I
3.15613 + 4.86238I 9.07167 4.07725I
u = 0.644981 0.626187I
a = 0.089635 0.895732I
b = 0.092830 1.067970I
3.15613 4.86238I 9.07167 + 4.07725I
u = 1.099790 + 0.120657I
a = 0.57327 1.71129I
b = 0.677548 0.714007I
2.55286 + 5.06128I 0.17487 6.03485I
u = 1.099790 0.120657I
a = 0.57327 + 1.71129I
b = 0.677548 + 0.714007I
2.55286 5.06128I 0.17487 + 6.03485I
u = 0.158971 + 0.833066I
a = 0.681108 0.773177I
b = 0.64725 + 2.19051I
1.27438 + 10.50480I 6.28570 6.88896I
u = 0.158971 0.833066I
a = 0.681108 + 0.773177I
b = 0.64725 2.19051I
1.27438 10.50480I 6.28570 + 6.88896I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.050730 + 0.482260I
a = 0.437094 0.465500I
b = 0.469489 + 0.315915I
0.63188 + 4.55606I 2.14668 8.40653I
u = 1.050730 0.482260I
a = 0.437094 + 0.465500I
b = 0.469489 0.315915I
0.63188 4.55606I 2.14668 + 8.40653I
u = 0.045051 + 0.816095I
a = 0.601069 + 0.545123I
b = 0.048727 1.403620I
4.78070 0.80383I 1.62038 + 2.30991I
u = 0.045051 0.816095I
a = 0.601069 0.545123I
b = 0.048727 + 1.403620I
4.78070 + 0.80383I 1.62038 2.30991I
u = 1.083610 + 0.529736I
a = 1.44141 + 0.49547I
b = 1.244770 0.462759I
0.11867 1.62470I 4.25246 1.50082I
u = 1.083610 0.529736I
a = 1.44141 0.49547I
b = 1.244770 + 0.462759I
0.11867 + 1.62470I 4.25246 + 1.50082I
u = 0.362452 + 0.684626I
a = 0.114239 0.531482I
b = 0.940476 0.787619I
1.97520 3.04297I 7.88705 + 5.30670I
u = 0.362452 0.684626I
a = 0.114239 + 0.531482I
b = 0.940476 + 0.787619I
1.97520 + 3.04297I 7.88705 5.30670I
u = 1.228580 + 0.361628I
a = 1.30002 + 1.89665I
b = 0.70865 + 2.23120I
5.53046 6.50130I 1.52112 + 3.99395I
u = 1.228580 0.361628I
a = 1.30002 1.89665I
b = 0.70865 2.23120I
5.53046 + 6.50130I 1.52112 3.99395I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.223330 + 0.431243I
a = 0.56938 1.41568I
b = 1.03679 1.32323I
8.56164 + 5.19775I 1.77174 5.54191I
u = 1.223330 0.431243I
a = 0.56938 + 1.41568I
b = 1.03679 + 1.32323I
8.56164 5.19775I 1.77174 + 5.54191I
u = 1.213290 + 0.476726I
a = 0.99905 1.70279I
b = 0.29155 2.27808I
8.23527 3.85685I 1.62083 + 1.19155I
u = 1.213290 0.476726I
a = 0.99905 + 1.70279I
b = 0.29155 + 2.27808I
8.23527 + 3.85685I 1.62083 1.19155I
u = 1.200190 + 0.525957I
a = 1.20643 + 2.71163I
b = 1.07784 + 3.13954I
4.3694 15.4841I 3.32553 + 9.90334I
u = 1.200190 0.525957I
a = 1.20643 2.71163I
b = 1.07784 3.13954I
4.3694 + 15.4841I 3.32553 9.90334I
u = 0.406338 + 0.510758I
a = 0.496544 0.118248I
b = 0.284789 + 0.096942I
1.214540 0.443734I 7.11648 + 2.03107I
u = 0.406338 0.510758I
a = 0.496544 + 0.118248I
b = 0.284789 0.096942I
1.214540 + 0.443734I 7.11648 2.03107I
7
II. I
u
2
= h2u
19
a + 292u
19
+ · · · 19a + 450, 2u
19
a + u
19
+ · · · 4a +
1, u
20
u
19
+ · · · + 2u 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
1
=
a
0.00496278au
19
0.724566u
19
+ ··· + 0.0471464a 1.11663
a
3
=
1
u
2
a
2
=
0.275434au
19
+ 0.213400u
19
+ ··· + 0.883375a + 0.972705
0.449132au
19
0.426799u
19
+ ··· + 0.233251a 0.945409
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
u
3
+ u
a
7
=
u
3
u
3
+ u
a
5
=
u
6
u
4
+ 1
u
6
2u
4
+ u
2
a
11
=
0.00496278au
19
+ 0.275434u
19
+ ··· + 1.04715a 0.116625
0.00496278au
19
0.275434u
19
+ ··· 0.0471464a 0.883375
a
6
=
0.00496278au
19
+ 0.275434u
19
+ ··· + 1.04715a 0.116625
0.0521092au
19
+ 1.39206u
19
+ ··· 0.00496278a + 1.27543
a
6
=
0.00496278au
19
+ 0.275434u
19
+ ··· + 1.04715a 0.116625
0.0521092au
19
+ 1.39206u
19
+ ··· 0.00496278a + 1.27543
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
19
24u
17
+ 4u
16
+ 64u
15
20u
14
84u
13
+ 44u
12
+ 36u
11
44u
10
+ 44u
9
+ 8u
8
60u
7
+ 24u
6
+ 16u
5
16u
4
+ 12u
3
8u + 2
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
u
40
+ u
39
+ ··· 8u 5
c
2
, c
11
u
40
+ 21u
39
+ ··· + 224u + 25
c
3
, c
8
(u
20
+ u
19
+ ··· 2u 1)
2
c
4
, c
7
(u
20
+ 3u
19
+ ··· + 12u + 1)
2
c
9
(u
20
11u
19
+ ··· 2u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
y
40
21y
39
+ ··· 224y + 25
c
2
, c
11
y
40
5y
39
+ ··· + 10824y + 625
c
3
, c
8
(y
20
11y
19
+ ··· 2y + 1)
2
c
4
, c
7
(y
20
+ 17y
19
+ ··· 62y + 1)
2
c
9
(y
20
3y
19
+ ··· 6y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.912041 + 0.514968I
a = 1.202430 + 0.262634I
b = 0.790032 + 0.864705I
0.30488 + 4.84109I 4.36837 6.37981I
u = 0.912041 + 0.514968I
a = 0.863351 1.079300I
b = 0.211896 0.497080I
0.30488 + 4.84109I 4.36837 6.37981I
u = 0.912041 0.514968I
a = 1.202430 0.262634I
b = 0.790032 0.864705I
0.30488 4.84109I 4.36837 + 6.37981I
u = 0.912041 0.514968I
a = 0.863351 + 1.079300I
b = 0.211896 + 0.497080I
0.30488 4.84109I 4.36837 + 6.37981I
u = 1.06181
a = 0.56924 + 1.35366I
b = 0.606732 + 0.596965I
3.24334 1.89980
u = 1.06181
a = 0.56924 1.35366I
b = 0.606732 0.596965I
3.24334 1.89980
u = 0.774874 + 0.460321I
a = 0.561614 + 0.452611I
b = 1.18361 + 1.19079I
4.54605 1.94645I 10.94680 + 4.81876I
u = 0.774874 + 0.460321I
a = 1.46137 + 2.24925I
b = 0.021165 + 1.201370I
4.54605 1.94645I 10.94680 + 4.81876I
u = 0.774874 0.460321I
a = 0.561614 0.452611I
b = 1.18361 1.19079I
4.54605 + 1.94645I 10.94680 4.81876I
u = 0.774874 0.460321I
a = 1.46137 2.24925I
b = 0.021165 1.201370I
4.54605 + 1.94645I 10.94680 4.81876I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.113113 + 0.821783I
a = 0.299059 + 0.841825I
b = 0.56052 2.00946I
3.49387 4.79919I 3.30190 + 3.09464I
u = 0.113113 + 0.821783I
a = 0.772001 0.434810I
b = 0.210069 + 1.180080I
3.49387 4.79919I 3.30190 + 3.09464I
u = 0.113113 0.821783I
a = 0.299059 0.841825I
b = 0.56052 + 2.00946I
3.49387 + 4.79919I 3.30190 3.09464I
u = 0.113113 0.821783I
a = 0.772001 + 0.434810I
b = 0.210069 1.180080I
3.49387 + 4.79919I 3.30190 3.09464I
u = 1.170970 + 0.421653I
a = 1.23567 1.48439I
b = 1.257140 0.347565I
1.14846 + 2.14390I 2.54408 0.24308I
u = 1.170970 + 0.421653I
a = 1.58784 + 1.85840I
b = 0.32685 + 3.00361I
1.14846 + 2.14390I 2.54408 0.24308I
u = 1.170970 0.421653I
a = 1.23567 + 1.48439I
b = 1.257140 + 0.347565I
1.14846 2.14390I 2.54408 + 0.24308I
u = 1.170970 0.421653I
a = 1.58784 1.85840I
b = 0.32685 3.00361I
1.14846 2.14390I 2.54408 + 0.24308I
u = 0.529602 + 0.535861I
a = 0.677079 + 0.411101I
b = 0.172938 + 0.721517I
1.34713 0.58469I 6.79795 + 0.00910I
u = 0.529602 + 0.535861I
a = 0.217669 0.460034I
b = 0.330007 0.464624I
1.34713 0.58469I 6.79795 + 0.00910I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.529602 0.535861I
a = 0.677079 0.411101I
b = 0.172938 0.721517I
1.34713 + 0.58469I 6.79795 0.00910I
u = 0.529602 0.535861I
a = 0.217669 + 0.460034I
b = 0.330007 + 0.464624I
1.34713 + 0.58469I 6.79795 0.00910I
u = 0.733657
a = 0.0310510
b = 1.32411
2.31303 1.06120
u = 0.733657
a = 3.26976
b = 1.25419
2.31303 1.06120
u = 1.174860 + 0.481002I
a = 1.53410 + 1.25489I
b = 1.46261 + 0.11524I
0.72067 6.27316I 3.89985 + 6.54347I
u = 1.174860 + 0.481002I
a = 0.21958 + 2.77549I
b = 2.31326 + 2.48708I
0.72067 6.27316I 3.89985 + 6.54347I
u = 1.174860 0.481002I
a = 1.53410 1.25489I
b = 1.46261 0.11524I
0.72067 + 6.27316I 3.89985 6.54347I
u = 1.174860 0.481002I
a = 0.21958 2.77549I
b = 2.31326 2.48708I
0.72067 + 6.27316I 3.89985 6.54347I
u = 0.092790 + 0.716473I
a = 0.305987 0.163469I
b = 1.46800 0.22850I
2.37392 + 1.80448I 7.17537 3.70058I
u = 0.092790 + 0.716473I
a = 0.24857 1.73836I
b = 0.95298 + 1.64118I
2.37392 + 1.80448I 7.17537 3.70058I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.092790 0.716473I
a = 0.305987 + 0.163469I
b = 1.46800 + 0.22850I
2.37392 1.80448I 7.17537 + 3.70058I
u = 0.092790 0.716473I
a = 0.24857 + 1.73836I
b = 0.95298 1.64118I
2.37392 1.80448I 7.17537 + 3.70058I
u = 1.224930 + 0.393654I
a = 0.512370 + 0.914068I
b = 0.812344 + 0.856039I
7.52808 + 0.63661I 0.960350 + 0.169887I
u = 1.224930 + 0.393654I
a = 1.29904 1.92814I
b = 0.59511 2.39970I
7.52808 + 0.63661I 0.960350 + 0.169887I
u = 1.224930 0.393654I
a = 0.512370 0.914068I
b = 0.812344 0.856039I
7.52808 0.63661I 0.960350 0.169887I
u = 1.224930 0.393654I
a = 1.29904 + 1.92814I
b = 0.59511 + 2.39970I
7.52808 0.63661I 0.960350 0.169887I
u = 1.205800 + 0.505812I
a = 0.75323 + 1.60895I
b = 0.32838 + 2.10011I
6.73027 + 9.64430I 0.34532 6.20543I
u = 1.205800 + 0.505812I
a = 0.99290 2.52542I
b = 1.23423 2.75984I
6.73027 + 9.64430I 0.34532 6.20543I
u = 1.205800 0.505812I
a = 0.75323 1.60895I
b = 0.32838 2.10011I
6.73027 9.64430I 0.34532 + 6.20543I
u = 1.205800 0.505812I
a = 0.99290 + 2.52542I
b = 1.23423 + 2.75984I
6.73027 9.64430I 0.34532 + 6.20543I
14
III. I
u
3
= hu
3
+ b u 1, u
3
+ 2u
2
+ 2a 4, u
4
2u
2
+ 2i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
1
=
1
2
u
3
u
2
+ 2
u
3
+ u + 1
a
3
=
1
u
2
a
2
=
1
2
u
3
u
2
+ 3
u
3
+ u
2
+ u + 1
a
8
=
u
u
3
+ u
a
10
=
u
3
u
3
u
a
7
=
u
3
u
3
+ u
a
5
=
1
u
2
a
11
=
1
2
u
3
u
2
+ 2
1
a
6
=
1
2
u
3
u
2
+ 2
u
3
+ u + 1
a
6
=
1
2
u
3
u
2
+ 2
u
3
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
11
(u + 1)
4
c
3
, c
8
u
4
2u
2
+ 2
c
4
, c
7
u
4
+ 2u
2
+ 2
c
5
, c
10
(u 1)
4
c
9
(u
2
2u + 2)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
(y 1)
4
c
3
, c
8
(y
2
2y + 2)
2
c
4
, c
7
(y
2
+ 2y + 2)
2
c
9
(y
2
+ 4)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.098680 + 0.455090I
a = 0.67820 1.77689I
b = 1.45509 1.09868I
0.82247 + 3.66386I 8.00000 4.00000I
u = 1.098680 0.455090I
a = 0.67820 + 1.77689I
b = 1.45509 + 1.09868I
0.82247 3.66386I 8.00000 + 4.00000I
u = 1.098680 + 0.455090I
a = 1.321800 + 0.223113I
b = 0.544910 1.098680I
0.82247 3.66386I 8.00000 + 4.00000I
u = 1.098680 0.455090I
a = 1.321800 0.223113I
b = 0.544910 + 1.098680I
0.82247 + 3.66386I 8.00000 4.00000I
18
IV. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
1
=
0
1
a
3
=
1
0
a
2
=
1
1
a
8
=
1
0
a
10
=
1
0
a
7
=
1
0
a
5
=
1
0
a
11
=
1
1
a
6
=
0
1
a
6
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u 1
c
2
, c
5
, c
10
c
11
u + 1
c
3
, c
4
, c
7
c
8
, c
9
u
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
y 1
c
3
, c
4
, c
7
c
8
, c
9
y
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
(u 1)(u + 1)
4
(u
28
+ u
27
+ ··· 5u
2
+ 1)(u
40
+ u
39
+ ··· 8u 5)
c
2
, c
11
((u + 1)
5
)(u
28
+ 11u
27
+ ··· + 10u + 1)(u
40
+ 21u
39
+ ··· + 224u + 25)
c
3
, c
8
u(u
4
2u
2
+ 2)(u
20
+ u
19
+ ··· 2u 1)
2
(u
28
3u
27
+ ··· 6u + 2)
c
4
, c
7
u(u
4
+ 2u
2
+ 2)(u
20
+ 3u
19
+ ··· + 12u + 1)
2
· (u
28
9u
27
+ ··· 118u + 14)
c
5
, c
10
((u 1)
4
)(u + 1)(u
28
+ u
27
+ ··· 5u
2
+ 1)(u
40
+ u
39
+ ··· 8u 5)
c
9
u(u
2
2u + 2)
2
(u
20
11u
19
+ ··· 2u + 1)
2
· (u
28
15u
27
+ ··· 4u + 4)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
((y 1)
5
)(y
28
11y
27
+ ··· 10y + 1)(y
40
21y
39
+ ··· 224y + 25)
c
2
, c
11
((y 1)
5
)(y
28
+ 21y
27
+ ··· 6y + 1)(y
40
5y
39
+ ··· + 10824y + 625)
c
3
, c
8
y(y
2
2y + 2)
2
(y
20
11y
19
+ ··· 2y + 1)
2
· (y
28
15y
27
+ ··· 4y + 4)
c
4
, c
7
y(y
2
+ 2y + 2)
2
(y
20
+ 17y
19
+ ··· 62y + 1)
2
· (y
28
+ 21y
27
+ ··· + 2092y + 196)
c
9
y(y
2
+ 4)
2
(y
20
3y
19
+ ··· 6y + 1)
2
(y
28
3y
27
+ ··· + 112y + 16)
24