11a
139
(K11a
139
)
A knot diagram
1
Linearized knot diagam
5 1 9 8 2 11 10 3 4 6 7
Solving Sequence
6,10
11 7 8
1,2
3 5 4 9
c
10
c
6
c
7
c
11
c
2
c
5
c
4
c
9
c
1
, c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−1330328u
36
337157u
35
+ ··· + 3064546b 5423429,
2108869u
36
5518964u
35
+ ··· + 1532273a + 24842943, u
37
2u
36
+ ··· + 13u + 1i
I
u
2
= hu
2
+ b, a 1, u
15
5u
13
u
12
+ 10u
11
+ 4u
10
8u
9
6u
8
u
7
+ 3u
6
+ 5u
5
+ u
4
u
3
u
2
u 1i
I
u
3
= hb
2
+ 2b 1, a 1, u + 1i
I
u
4
= hb + 1, a 1, u 1i
* 4 irreducible components of dim
C
= 0, with total 55 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.33 × 10
6
u
36
3.37 × 10
5
u
35
+ · · · + 3.06 × 10
6
b 5.42 × 10
6
, 2.11 ×
10
6
u
36
5.52×10
6
u
35
+· · ·+1.53×10
6
a+2.48×10
7
, u
37
2u
36
+· · ·+13u+1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
3
+ u
a
8
=
u
3
+ 2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
2
=
1.37630u
36
+ 3.60182u
35
+ ··· 53.4414u 16.2131
0.434103u
36
+ 0.110019u
35
+ ··· + 4.77936u + 1.76973
a
3
=
1.61129u
36
+ 4.21702u
35
+ ··· 52.0448u 17.2627
1.20630u
36
+ 0.913862u
35
+ ··· + 17.4922u + 2.71463
a
5
=
1.84921u
36
+ 3.03426u
35
+ ··· 28.6788u 14.3763
0.129011u
36
0.605251u
35
+ ··· + 4.55239u + 1.81040
a
4
=
1.03926u
36
+ 2.83241u
35
+ ··· 37.3538u 14.7413
0.817794u
36
+ 0.142729u
35
+ ··· + 14.2739u + 2.65174
a
9
=
1.35408u
36
3.76576u
35
+ ··· + 69.5409u + 23.2930
0.656314u
36
+ 0.203071u
35
+ ··· 15.2619u 3.27106
a
9
=
1.35408u
36
3.76576u
35
+ ··· + 69.5409u + 23.2930
0.656314u
36
+ 0.203071u
35
+ ··· 15.2619u 3.27106
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5839087
1532273
u
36
+
3620132
1532273
u
35
+ ··· +
36237593
1532273
u
19224398
1532273
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
37
+ 2u
36
+ ··· + u + 1
c
2
u
37
+ 18u
36
+ ··· + 5u + 1
c
3
, c
8
, c
9
u
37
+ 2u
36
+ ··· + 2u
2
2
c
4
u
37
6u
36
+ ··· + 288u 128
c
6
, c
10
, c
11
u
37
2u
36
+ ··· + 13u + 1
c
7
u
37
+ 6u
36
+ ··· 224u 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
37
18y
36
+ ··· + 5y 1
c
2
y
37
+ 6y
36
+ ··· + 21y 1
c
3
, c
8
, c
9
y
37
34y
36
+ ··· + 8y 4
c
4
y
37
10y
36
+ ··· + 156672y 16384
c
6
, c
10
, c
11
y
37
34y
36
+ ··· + 117y 1
c
7
y
37
+ 18y
36
+ ··· + 32256y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.013380 + 0.311874I
a = 0.007083 + 0.507321I
b = 0.911372 + 0.339991I
3.23840 + 0.33679I 3.19033 + 0.85162I
u = 1.013380 0.311874I
a = 0.007083 0.507321I
b = 0.911372 0.339991I
3.23840 0.33679I 3.19033 0.85162I
u = 0.148500 + 0.878352I
a = 0.35212 + 1.40071I
b = 0.17334 + 2.13411I
8.84281 9.20717I 9.51764 + 6.62975I
u = 0.148500 0.878352I
a = 0.35212 1.40071I
b = 0.17334 2.13411I
8.84281 + 9.20717I 9.51764 6.62975I
u = 1.15117
a = 0.432099
b = 1.94913
3.47854 0.910990
u = 0.165281 + 0.808869I
a = 0.30320 1.46229I
b = 0.11222 1.95034I
3.03568 + 5.84417I 5.83954 7.10655I
u = 0.165281 0.808869I
a = 0.30320 + 1.46229I
b = 0.11222 + 1.95034I
3.03568 5.84417I 5.83954 + 7.10655I
u = 0.471583 + 0.599168I
a = 0.162338 + 1.262080I
b = 0.480709 + 1.121580I
2.94289 4.00123I 5.31382 + 7.13651I
u = 0.471583 0.599168I
a = 0.162338 1.262080I
b = 0.480709 1.121580I
2.94289 + 4.00123I 5.31382 7.13651I
u = 0.022041 + 0.744033I
a = 0.53343 1.59774I
b = 0.42055 2.05462I
9.93818 0.58603I 11.65035 0.12880I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.022041 0.744033I
a = 0.53343 + 1.59774I
b = 0.42055 + 2.05462I
9.93818 + 0.58603I 11.65035 + 0.12880I
u = 0.099912 + 0.709675I
a = 0.33485 + 1.62744I
b = 0.17353 + 1.80893I
3.65380 1.92705I 8.13048 + 0.55620I
u = 0.099912 0.709675I
a = 0.33485 1.62744I
b = 0.17353 1.80893I
3.65380 + 1.92705I 8.13048 0.55620I
u = 1.253160 + 0.303469I
a = 0.759003 0.531242I
b = 1.10971 2.91416I
6.13830 3.19514I 6.64446 + 4.28023I
u = 1.253160 0.303469I
a = 0.759003 + 0.531242I
b = 1.10971 + 2.91416I
6.13830 + 3.19514I 6.64446 4.28023I
u = 1.296560 + 0.177192I
a = 0.331390 0.464636I
b = 0.683956 0.483013I
3.08964 + 0.95760I 60.10 + 1.305195I
u = 1.296560 0.177192I
a = 0.331390 + 0.464636I
b = 0.683956 + 0.483013I
3.08964 0.95760I 60.10 1.305195I
u = 0.568431 + 0.375314I
a = 0.520054 0.971540I
b = 0.443456 0.641882I
0.89372 + 1.45212I 2.19487 5.36999I
u = 0.568431 0.375314I
a = 0.520054 + 0.971540I
b = 0.443456 + 0.641882I
0.89372 1.45212I 2.19487 + 5.36999I
u = 1.332640 + 0.298347I
a = 0.706159 + 0.554504I
b = 1.13989 + 2.44217I
0.86122 + 5.58916I 3.00000 3.15563I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.332640 0.298347I
a = 0.706159 0.554504I
b = 1.13989 2.44217I
0.86122 5.58916I 3.00000 + 3.15563I
u = 1.350860 + 0.271610I
a = 0.313821 + 0.546709I
b = 0.634567 + 0.232909I
4.43467 4.86040I 0. + 4.57417I
u = 1.350860 0.271610I
a = 0.313821 0.546709I
b = 0.634567 0.232909I
4.43467 + 4.86040I 0. 4.57417I
u = 1.361180 + 0.332115I
a = 0.298381 0.581807I
b = 0.695184 0.117059I
1.06880 + 8.43099I 0. 5.07593I
u = 1.361180 0.332115I
a = 0.298381 + 0.581807I
b = 0.695184 + 0.117059I
1.06880 8.43099I 0. + 5.07593I
u = 1.400590 + 0.045310I
a = 0.466611 0.492889I
b = 0.170732 0.843883I
3.96621 + 1.16950I 0
u = 1.400590 0.045310I
a = 0.466611 + 0.492889I
b = 0.170732 + 0.843883I
3.96621 1.16950I 0
u = 1.366970 + 0.343185I
a = 0.701831 0.589074I
b = 1.41347 2.32983I
1.80064 9.99903I 0. + 8.15131I
u = 1.366970 0.343185I
a = 0.701831 + 0.589074I
b = 1.41347 + 2.32983I
1.80064 + 9.99903I 0. 8.15131I
u = 1.411670 + 0.052360I
a = 0.537001 0.501630I
b = 0.155713 1.234020I
7.20025 2.58398I 4.12642 + 3.46228I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.411670 0.052360I
a = 0.537001 + 0.501630I
b = 0.155713 + 1.234020I
7.20025 + 2.58398I 4.12642 3.46228I
u = 1.37052 + 0.38186I
a = 0.709680 + 0.609188I
b = 1.59214 + 2.36282I
4.0535 + 13.7305I 0. 8.23789I
u = 1.37052 0.38186I
a = 0.709680 0.609188I
b = 1.59214 2.36282I
4.0535 13.7305I 0. + 8.23789I
u = 1.41824 + 0.13440I
a = 0.588434 + 0.523307I
b = 0.51535 + 1.54249I
3.18948 + 6.36871I 0. 6.27419I
u = 1.41824 0.13440I
a = 0.588434 0.523307I
b = 0.51535 1.54249I
3.18948 6.36871I 0. + 6.27419I
u = 0.302230
a = 2.69339
b = 0.212469
1.08012 10.9510
u = 0.0973082
a = 10.7401
b = 1.30703
6.54639 13.9600
8
II. I
u
2
= hu
2
+ b, a 1, u
15
5u
13
+ · · · u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
3
+ u
a
8
=
u
3
+ 2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
2
=
1
u
2
a
3
=
u
4
u
2
+ 1
u
6
+ 2u
4
u
2
a
5
=
u
u
3
+ u
a
4
=
u
9
+ 4u
7
5u
5
+ 2u
3
+ u
u
9
+ 3u
7
3u
5
+ u
a
9
=
u
13
4u
11
+ 7u
9
6u
7
+ 2u
5
+ u
u
12
+ 4u
10
+ u
9
6u
8
3u
7
+ 3u
6
+ 3u
5
+ u
4
u
3
u
2
1
a
9
=
u
13
4u
11
+ 7u
9
6u
7
+ 2u
5
+ u
u
12
+ 4u
10
+ u
9
6u
8
3u
7
+ 3u
6
+ 3u
5
+ u
4
u
3
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
12u
7
4u
6
+ 12u
5
+ 8u
4
4u
2
4u 6
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
, c
11
u
15
5u
13
+ ··· u 1
c
2
u
15
+ 10u
14
+ ··· u + 1
c
3
, c
8
, c
9
(u
5
u
4
2u
3
+ u
2
+ u + 1)
3
c
4
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
3
c
7
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
3
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
, c
11
y
15
10y
14
+ ··· y 1
c
2
y
15
10y
14
+ ··· + 7y 1
c
3
, c
8
, c
9
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
c
4
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
3
c
7
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
3
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.051760 + 0.377982I
a = 1.00000
b = 0.963319 0.795090I
0.32910 1.53058I 2.51511 + 4.43065I
u = 1.051760 0.377982I
a = 1.00000
b = 0.963319 + 0.795090I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.162112 + 0.782578I
a = 1.00000
b = 0.586148 + 0.253730I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.162112 0.782578I
a = 1.00000
b = 0.586148 0.253730I
5.87256 + 4.40083I 6.74431 3.49859I
u = 1.121390 + 0.470419I
a = 1.00000
b = 1.03622 + 1.05504I
5.87256 + 4.40083I 6.74431 3.49859I
u = 1.121390 0.470419I
a = 1.00000
b = 1.03622 1.05504I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.633490 + 0.451585I
a = 1.00000
b = 0.197381 + 0.572150I
2.40108 3.48114 + 0.I
u = 0.633490 0.451585I
a = 1.00000
b = 0.197381 0.572150I
2.40108 3.48114 + 0.I
u = 1.209710 + 0.247023I
a = 1.00000
b = 1.40237 + 0.59765I
0.32910 1.53058I 2.51511 + 4.43065I
u = 1.209710 0.247023I
a = 1.00000
b = 1.40237 0.59765I
0.32910 + 1.53058I 2.51511 4.43065I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.26698
a = 1.00000
b = 1.60524
2.40108 3.48110
u = 1.283500 + 0.312159I
a = 1.00000
b = 1.54993 0.80131I
5.87256 + 4.40083I 6.74431 3.49859I
u = 1.283500 0.312159I
a = 1.00000
b = 1.54993 + 0.80131I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.157950 + 0.625006I
a = 1.00000
b = 0.365684 0.197439I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.157950 0.625006I
a = 1.00000
b = 0.365684 + 0.197439I
0.32910 1.53058I 2.51511 + 4.43065I
13
III. I
u
3
= hb
2
+ 2b 1, a 1, u + 1i
(i) Arc colorings
a
6
=
0
1
a
10
=
1
0
a
11
=
1
1
a
7
=
1
0
a
8
=
1
0
a
1
=
0
1
a
2
=
1
b
a
3
=
1
b + 1
a
5
=
1
b 1
a
4
=
b 2
b 1
a
9
=
b 2
2
a
9
=
b 2
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
10
c
11
(u + 1)
2
c
3
, c
4
, c
8
c
9
u
2
2
c
5
, c
6
(u 1)
2
c
7
u
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
(y 1)
2
c
3
, c
4
, c
8
c
9
(y 2)
2
c
7
y
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.414214
4.93480 8.00000
u = 1.00000
a = 1.00000
b = 2.41421
4.93480 8.00000
17
IV. I
u
4
= hb + 1, a 1, u 1i
(i) Arc colorings
a
6
=
0
1
a
10
=
1
0
a
11
=
1
1
a
7
=
1
0
a
8
=
1
0
a
1
=
0
1
a
2
=
1
1
a
3
=
1
0
a
5
=
1
0
a
4
=
1
0
a
9
=
1
0
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
, c
11
u 1
c
2
, c
5
, c
6
u + 1
c
3
, c
4
, c
7
c
8
, c
9
u
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
y 1
c
3
, c
4
, c
7
c
8
, c
9
y
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
0 0
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u + 1)
2
(u
15
5u
13
+ ··· u 1)(u
37
+ 2u
36
+ ··· + u + 1)
c
2
((u + 1)
3
)(u
15
+ 10u
14
+ ··· u + 1)(u
37
+ 18u
36
+ ··· + 5u + 1)
c
3
, c
8
, c
9
u(u
2
2)(u
5
u
4
+ ··· + u + 1)
3
(u
37
+ 2u
36
+ ··· + 2u
2
2)
c
4
u(u
2
2)(u
5
+ 3u
4
+ ··· u 1)
3
(u
37
6u
36
+ ··· + 288u 128)
c
5
((u 1)
2
)(u + 1)(u
15
5u
13
+ ··· u 1)(u
37
+ 2u
36
+ ··· + u + 1)
c
6
((u 1)
2
)(u + 1)(u
15
5u
13
+ ··· u 1)(u
37
2u
36
+ ··· + 13u + 1)
c
7
u
3
(u
5
+ u
4
+ ··· + u + 1)
3
(u
37
+ 6u
36
+ ··· 224u 16)
c
10
, c
11
(u 1)(u + 1)
2
(u
15
5u
13
+ ··· u 1)(u
37
2u
36
+ ··· + 13u + 1)
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y 1)
3
)(y
15
10y
14
+ ··· y 1)(y
37
18y
36
+ ··· + 5y 1)
c
2
((y 1)
3
)(y
15
10y
14
+ ··· + 7y 1)(y
37
+ 6y
36
+ ··· + 21y 1)
c
3
, c
8
, c
9
y(y 2)
2
(y
5
5y
4
+ ··· y 1)
3
(y
37
34y
36
+ ··· + 8y 4)
c
4
y(y 2)
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
3
· (y
37
10y
36
+ ··· + 156672y 16384)
c
6
, c
10
, c
11
((y 1)
3
)(y
15
10y
14
+ ··· y 1)(y
37
34y
36
+ ··· + 117y 1)
c
7
y
3
(y
5
+ 3y
4
+ ··· y 1)
3
(y
37
+ 18y
36
+ ··· + 32256y 256)
23