11a
140
(K11a
140
)
A knot diagram
1
Linearized knot diagam
5 1 9 8 2 11 10 3 4 7 6
Solving Sequence
2,6
5 1 3 11 7 10 8 9 4
c
5
c
1
c
2
c
11
c
6
c
10
c
7
c
8
c
4
c
3
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
32
+ u
31
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 32 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
32
+ u
31
+ · · · 2u 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
11
=
u
3
u
3
+ u
a
7
=
u
6
u
4
+ 1
u
6
+ 2u
4
u
2
a
10
=
u
9
2u
7
+ u
5
+ 2u
3
u
u
9
+ 3u
7
3u
5
+ u
a
8
=
u
12
3u
10
+ 3u
8
+ 2u
6
4u
4
+ u
2
+ 1
u
12
+ 4u
10
6u
8
+ 2u
6
+ 3u
4
2u
2
a
9
=
u
20
+ 5u
18
11u
16
+ 10u
14
+ 2u
12
13u
10
+ 9u
8
+ 2u
6
5u
4
+ u
2
+ 1
u
22
6u
20
+ 17u
18
26u
16
+ 20u
14
13u
10
+ 10u
8
3u
6
+ 2u
4
u
2
a
4
=
u
26
+ 7u
24
+ ··· + u
2
+ 1
u
26
8u
24
+ ··· 2u
4
u
2
a
4
=
u
26
+ 7u
24
+ ··· + u
2
+ 1
u
26
8u
24
+ ··· 2u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
31
40u
29
4u
28
+ 184u
27
+ 36u
26
484u
25
148u
24
+ 728u
23
+ 340u
22
420u
21
420u
20
556u
19
+ 116u
18
+ 1316u
17
+ 444u
16
872u
15
652u
14
292u
13
+ 236u
12
+
772u
11
+ 244u
10
316u
9
260u
8
124u
7
+ 36u
6
+ 116u
5
+ 44u
4
4u
3
12u
2
12u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
32
+ u
31
+ ··· 2u 1
c
2
u
32
+ 19u
31
+ ··· 8u
2
+ 1
c
3
, c
8
, c
9
u
32
u
31
+ ··· 2u 1
c
4
u
32
+ 3u
31
+ ··· + 202u + 77
c
6
, c
7
, c
10
c
11
u
32
+ 3u
31
+ ··· + 16u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
32
19y
31
+ ··· 8y
2
+ 1
c
2
y
32
11y
31
+ ··· 16y + 1
c
3
, c
8
, c
9
y
32
31y
31
+ ··· 16y
2
+ 1
c
4
y
32
19y
31
+ ··· 95320y + 5929
c
6
, c
7
, c
10
c
11
y
32
+ 41y
31
+ ··· 112y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.868634 + 0.432115I
3.34862 + 4.04370I 6.04453 7.13519I
u = 0.868634 0.432115I
3.34862 4.04370I 6.04453 + 7.13519I
u = 1.04533
6.54630 13.9220
u = 0.026700 + 0.917936I
14.7670 5.6087I 9.35181 + 2.83991I
u = 0.026700 0.917936I
14.7670 + 5.6087I 9.35181 2.83991I
u = 0.012118 + 0.901786I
8.30499 + 2.26267I 6.08064 2.91656I
u = 0.012118 0.901786I
8.30499 2.26267I 6.08064 + 2.91656I
u = 1.083140 + 0.341712I
3.37831 + 1.66824I 9.56243 0.35146I
u = 1.083140 0.341712I
3.37831 1.66824I 9.56243 + 0.35146I
u = 1.076920 + 0.423315I
2.77345 5.10982I 6.71803 + 8.18202I
u = 1.076920 0.423315I
2.77345 + 5.10982I 6.71803 8.18202I
u = 0.756512 + 0.350926I
0.83897 1.64134I 1.45053 + 5.73960I
u = 0.756512 0.350926I
0.83897 + 1.64134I 1.45053 5.73960I
u = 0.804096
1.07276 10.5910
u = 1.157410 + 0.314330I
9.45578 + 0.50238I 13.25888 + 0.22265I
u = 1.157410 0.314330I
9.45578 0.50238I 13.25888 0.22265I
u = 1.110460 + 0.463462I
8.33031 + 8.05747I 10.74797 7.46464I
u = 1.110460 0.463462I
8.33031 8.05747I 10.74797 + 7.46464I
u = 0.163704 + 0.669811I
5.64755 3.79286I 7.65510 + 3.79891I
u = 0.163704 0.669811I
5.64755 + 3.79286I 7.65510 3.79891I
u = 0.522402 + 0.426932I
2.44365 0.31845I 3.24811 0.20471I
u = 0.522402 0.426932I
2.44365 + 0.31845I 3.24811 + 0.20471I
u = 1.267860 + 0.464164I
12.21500 + 2.58352I 9.43681 0.14752I
u = 1.267860 0.464164I
12.21500 2.58352I 9.43681 + 0.14752I
u = 1.263650 + 0.477439I
12.11660 7.17755I 9.14770 + 5.86389I
u = 1.263650 0.477439I
12.11660 + 7.17755I 9.14770 5.86389I
u = 1.268830 + 0.488464I
18.5604 + 10.6275I 12.35486 5.78214I
u = 1.268830 0.488464I
18.5604 10.6275I 12.35486 + 5.78214I
u = 1.280210 + 0.458189I
18.7882 + 0.7378I 12.72584 + 0.13438I
u = 1.280210 0.458189I
18.7882 0.7378I 12.72584 0.13438I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.144298 + 0.527794I
0.269618 + 1.333490I 2.86164 5.19756I
u = 0.144298 0.527794I
0.269618 1.333490I 2.86164 + 5.19756I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
32
+ u
31
+ ··· 2u 1
c
2
u
32
+ 19u
31
+ ··· 8u
2
+ 1
c
3
, c
8
, c
9
u
32
u
31
+ ··· 2u 1
c
4
u
32
+ 3u
31
+ ··· + 202u + 77
c
6
, c
7
, c
10
c
11
u
32
+ 3u
31
+ ··· + 16u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
32
19y
31
+ ··· 8y
2
+ 1
c
2
y
32
11y
31
+ ··· 16y + 1
c
3
, c
8
, c
9
y
32
31y
31
+ ··· 16y
2
+ 1
c
4
y
32
19y
31
+ ··· 95320y + 5929
c
6
, c
7
, c
10
c
11
y
32
+ 41y
31
+ ··· 112y + 1
8