11a
142
(K11a
142
)
A knot diagram
1
Linearized knot diagam
6 1 9 10 2 5 11 3 4 7 8
Solving Sequence
3,9
4 10 5
8,11
1 2 7 6
c
3
c
9
c
4
c
8
c
11
c
2
c
7
c
6
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.36795 × 10
16
u
34
7.90337 × 10
16
u
33
+ ··· + 3.65214 × 10
17
b 1.06187 × 10
17
,
3.20846 × 10
16
u
34
+ 7.33609 × 10
16
u
33
+ ··· + 3.65214 × 10
17
a + 5.49062 × 10
17
, u
35
u
34
+ ··· 12u 4i
I
u
2
= h2b + 2a + u, 2a
2
2au 2a + u + 3, u
2
2i
I
v
1
= ha, b v + 1, v
2
v + 1i
* 3 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−6.37×10
16
u
34
7.90×10
16
u
33
+· · ·+3.65×10
17
b1.06×10
17
, 3.21×
10
16
u
34
+7.34×10
16
u
33
+· · ·+3.65×10
17
a+5.49×10
17
, u
35
u
34
+· · ·12u4i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
10
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
8
=
u
u
a
11
=
0.0878513u
34
0.200871u
33
+ ··· 1.92802u 1.50340
0.174362u
34
+ 0.216404u
33
+ ··· + 2.30563u + 0.290753
a
1
=
0.0624444u
34
+ 0.0343900u
33
+ ··· 0.357458u 1.09522
0.148955u
34
0.0188573u
33
+ ··· + 0.735065u 0.117420
a
2
=
0.00194352u
34
+ 0.344883u
33
+ ··· + 1.74022u + 2.04509
0.0876840u
34
0.158849u
33
+ ··· 1.60828u 0.239291
a
7
=
0.0878513u
34
+ 0.200871u
33
+ ··· + 1.92802u + 1.50340
0.268809u
34
0.150206u
33
+ ··· 1.51044u 0.864136
a
6
=
0.0328237u
34
0.0751277u
33
+ ··· + 0.506093u + 0.865585
0.00374850u
34
0.0472669u
33
+ ··· + 0.524988u 0.0604220
a
6
=
0.0328237u
34
0.0751277u
33
+ ··· + 0.506093u + 0.865585
0.00374850u
34
0.0472669u
33
+ ··· + 0.524988u 0.0604220
(ii) Obstruction class = 1
(iii) Cusp Shapes =
32902895900849614
91303571055107371
u
34
+
12004762532282944
91303571055107371
u
33
+···+
239783904823467776
91303571055107371
u+
1365844903778505204
91303571055107371
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
35
2u
34
+ ··· 2u + 1
c
2
, c
6
u
35
+ 10u
34
+ ··· + 4u 1
c
3
, c
4
, c
8
c
9
u
35
+ u
34
+ ··· 12u + 4
c
7
, c
10
, c
11
u
35
3u
34
+ ··· + 7u + 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
35
+ 10y
34
+ ··· + 4y 1
c
2
, c
6
y
35
+ 34y
34
+ ··· + 108y 1
c
3
, c
4
, c
8
c
9
y
35
45y
34
+ ··· + 80y 16
c
7
, c
10
, c
11
y
35
39y
34
+ ··· + 749y 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.01124
a = 0.435017
b = 1.74489
5.84048 16.2440
u = 0.842940 + 0.301389I
a = 0.279499 + 1.063810I
b = 0.541332 0.560583I
3.15741 + 4.91553I 11.80461 7.26359I
u = 0.842940 0.301389I
a = 0.279499 1.063810I
b = 0.541332 + 0.560583I
3.15741 4.91553I 11.80461 + 7.26359I
u = 0.046502 + 0.876821I
a = 0.05406 1.61301I
b = 0.014495 0.143542I
7.57337 + 3.08858I 11.98726 2.45837I
u = 0.046502 0.876821I
a = 0.05406 + 1.61301I
b = 0.014495 + 0.143542I
7.57337 3.08858I 11.98726 + 2.45837I
u = 0.924843 + 0.638045I
a = 0.377611 + 0.218222I
b = 1.63025 + 0.42363I
10.22050 8.11783I 13.7681 + 6.1510I
u = 0.924843 0.638045I
a = 0.377611 0.218222I
b = 1.63025 0.42363I
10.22050 + 8.11783I 13.7681 6.1510I
u = 0.855744 + 0.143816I
a = 0.530278 + 1.121980I
b = 0.261867 0.584427I
3.37741 + 0.53913I 12.96867 + 0.98562I
u = 0.855744 0.143816I
a = 0.530278 1.121980I
b = 0.261867 + 0.584427I
3.37741 0.53913I 12.96867 0.98562I
u = 1.002070 + 0.587960I
a = 0.398952 + 0.208816I
b = 1.62413 + 0.38544I
10.76680 + 1.81479I 14.8433 1.1672I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.002070 0.587960I
a = 0.398952 0.208816I
b = 1.62413 0.38544I
10.76680 1.81479I 14.8433 + 1.1672I
u = 0.746503 + 0.235179I
a = 0.327678 + 0.089960I
b = 1.94693 + 0.30523I
2.70500 3.34459I 11.31994 + 5.51487I
u = 0.746503 0.235179I
a = 0.327678 0.089960I
b = 1.94693 0.30523I
2.70500 + 3.34459I 11.31994 5.51487I
u = 0.418462 + 0.378689I
a = 0.176733 + 0.515354I
b = 0.541640 + 0.031955I
1.54201 + 1.37506I 2.61836 5.92080I
u = 0.418462 0.378689I
a = 0.176733 0.515354I
b = 0.541640 0.031955I
1.54201 1.37506I 2.61836 + 5.92080I
u = 1.45544 + 0.05665I
a = 0.731751 + 0.109995I
b = 1.382100 + 0.064187I
6.70444 + 0.15451I 13.90887 + 0.I
u = 1.45544 0.05665I
a = 0.731751 0.109995I
b = 1.382100 0.064187I
6.70444 0.15451I 13.90887 + 0.I
u = 1.48918 + 0.04339I
a = 1.030150 0.268681I
b = 1.268110 + 0.012077I
4.71864 2.64789I 7.00000 + 4.86854I
u = 1.48918 0.04339I
a = 1.030150 + 0.268681I
b = 1.268110 0.012077I
4.71864 + 2.64789I 7.00000 4.86854I
u = 0.267965 + 0.386180I
a = 1.06586 2.12149I
b = 0.0421102 0.0027654I
1.31539 + 1.16539I 7.47416 + 2.51618I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.267965 0.386180I
a = 1.06586 + 2.12149I
b = 0.0421102 + 0.0027654I
1.31539 1.16539I 7.47416 2.51618I
u = 0.026938 + 0.426896I
a = 0.010788 + 0.289994I
b = 0.286121 + 0.820389I
0.70287 2.35372I 3.69812 + 3.90292I
u = 0.026938 0.426896I
a = 0.010788 0.289994I
b = 0.286121 0.820389I
0.70287 + 2.35372I 3.69812 3.90292I
u = 0.410201
a = 0.632763
b = 0.224697
0.605164 16.5250
u = 1.65775 + 0.05997I
a = 2.99916 + 0.53570I
b = 3.92472 0.49978I
11.20700 + 4.43486I 0
u = 1.65775 0.05997I
a = 2.99916 0.53570I
b = 3.92472 + 0.49978I
11.20700 4.43486I 0
u = 1.67466 + 0.07865I
a = 0.776181 0.438183I
b = 1.157350 0.141346I
12.00650 6.36730I 0
u = 1.67466 0.07865I
a = 0.776181 + 0.438183I
b = 1.157350 + 0.141346I
12.00650 + 6.36730I 0
u = 1.67898 + 0.03136I
a = 0.756308 0.404108I
b = 1.189480 0.156593I
12.35470 + 0.09189I 0
u = 1.67898 0.03136I
a = 0.756308 + 0.404108I
b = 1.189480 + 0.156593I
12.35470 0.09189I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.70626
a = 2.73816
b = 3.68944
15.4583 0
u = 1.70118 + 0.18976I
a = 2.19546 + 0.94563I
b = 3.16027 0.84490I
19.2288 + 11.4138I 0
u = 1.70118 0.18976I
a = 2.19546 0.94563I
b = 3.16027 + 0.84490I
19.2288 11.4138I 0
u = 1.72576 + 0.15889I
a = 2.25378 + 0.76495I
b = 3.22623 0.68282I
19.2201 4.8251I 0
u = 1.72576 0.15889I
a = 2.25378 0.76495I
b = 3.22623 + 0.68282I
19.2201 + 4.8251I 0
8
II. I
u
2
= h2b + 2a + u, 2a
2
2au 2a + u + 3, u
2
2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
2
a
10
=
u
u
a
5
=
1
0
a
8
=
u
u
a
11
=
a
a
1
2
u
a
1
=
a u
a +
1
2
u
a
2
=
1
2
au + a
1
2
u +
1
2
a +
1
2
u + 1
a
7
=
a u
a +
1
2
u
a
6
=
1
2
u
a +
1
2
u
a
6
=
1
2
u
a +
1
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a 2u + 12
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
2
c
2
, c
5
, c
6
(u
2
+ u + 1)
2
c
3
, c
4
, c
8
c
9
(u
2
2)
2
c
7
(u 1)
4
c
10
, c
11
(u + 1)
4
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
(y
2
+ y + 1)
2
c
3
, c
4
, c
8
c
9
(y 2)
4
c
7
, c
10
, c
11
(y 1)
4
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 1.20711 + 0.86603I
b = 1.91421 0.86603I
6.57974 2.02988I 14.0000 + 3.4641I
u = 1.41421
a = 1.20711 0.86603I
b = 1.91421 + 0.86603I
6.57974 + 2.02988I 14.0000 3.4641I
u = 1.41421
a = 0.207107 + 0.866025I
b = 0.914214 0.866025I
6.57974 2.02988I 14.0000 + 3.4641I
u = 1.41421
a = 0.207107 0.866025I
b = 0.914214 + 0.866025I
6.57974 + 2.02988I 14.0000 3.4641I
12
III. I
v
1
= ha, b v + 1, v
2
v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
10
=
v
0
a
5
=
1
0
a
8
=
v
0
a
11
=
0
v 1
a
1
=
v
v 1
a
2
=
0
v
a
7
=
v
v + 1
a
6
=
1
v + 1
a
6
=
1
v + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v + 14
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
2
+ u + 1
c
3
, c
4
, c
8
c
9
u
2
c
5
u
2
u + 1
c
7
(u + 1)
2
c
10
, c
11
(u 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
y
2
+ y + 1
c
3
, c
4
, c
8
c
9
y
2
c
7
, c
10
, c
11
(y 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 12.00000 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
1.64493 2.02988I 12.00000 + 3.46410I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
35
2u
34
+ ··· 2u + 1)
c
2
, c
6
((u
2
+ u + 1)
3
)(u
35
+ 10u
34
+ ··· + 4u 1)
c
3
, c
4
, c
8
c
9
u
2
(u
2
2)
2
(u
35
+ u
34
+ ··· 12u + 4)
c
5
(u
2
u + 1)(u
2
+ u + 1)
2
(u
35
2u
34
+ ··· 2u + 1)
c
7
((u 1)
4
)(u + 1)
2
(u
35
3u
34
+ ··· + 7u + 7)
c
10
, c
11
((u 1)
2
)(u + 1)
4
(u
35
3u
34
+ ··· + 7u + 7)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y
2
+ y + 1)
3
)(y
35
+ 10y
34
+ ··· + 4y 1)
c
2
, c
6
((y
2
+ y + 1)
3
)(y
35
+ 34y
34
+ ··· + 108y 1)
c
3
, c
4
, c
8
c
9
y
2
(y 2)
4
(y
35
45y
34
+ ··· + 80y 16)
c
7
, c
10
, c
11
((y 1)
6
)(y
35
39y
34
+ ··· + 749y 49)
18