11a
145
(K11a
145
)
A knot diagram
1
Linearized knot diagam
6 1 10 9 2 5 11 3 4 8 7
Solving Sequence
3,10
4 9 5 8 11 7 1 2 6
c
3
c
9
c
4
c
8
c
10
c
7
c
11
c
2
c
6
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
41
+ u
40
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
41
+ u
40
+ · · · + u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
8
=
u
3
2u
u
3
+ u
a
11
=
u
7
+ 4u
5
+ 4u
3
u
7
3u
5
2u
3
+ u
a
7
=
u
11
6u
9
12u
7
8u
5
u
3
2u
u
11
+ 5u
9
+ 8u
7
+ 3u
5
u
3
+ u
a
1
=
u
15
+ 8u
13
+ 24u
11
+ 32u
9
+ 18u
7
+ 8u
5
+ 8u
3
u
15
7u
13
18u
11
19u
9
6u
7
2u
5
4u
3
+ u
a
2
=
u
30
+ 15u
28
+ ··· 8u
4
+ 1
u
30
14u
28
+ ··· + 8u
4
u
2
a
6
=
u
17
8u
15
25u
13
38u
11
31u
9
20u
7
14u
5
4u
3
u
u
19
+ 9u
17
+ 32u
15
+ 55u
13
+ 45u
11
+ 19u
9
+ 16u
7
+ 10u
5
3u
3
+ u
a
6
=
u
17
8u
15
25u
13
38u
11
31u
9
20u
7
14u
5
4u
3
u
u
19
+ 9u
17
+ 32u
15
+ 55u
13
+ 45u
11
+ 19u
9
+ 16u
7
+ 10u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
40
+ 4u
39
+ ··· 12u + 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
41
u
40
+ ··· + u 1
c
2
, c
6
u
41
+ 15u
40
+ ··· + 5u 1
c
3
, c
4
, c
9
u
41
u
40
+ ··· + u 1
c
7
, c
10
, c
11
u
41
+ 5u
40
+ ··· 23u 3
c
8
u
41
+ u
40
+ ··· 53u 37
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
41
+ 15y
40
+ ··· + 5y 1
c
2
, c
6
y
41
+ 23y
40
+ ··· + 85y 1
c
3
, c
4
, c
9
y
41
+ 39y
40
+ ··· + 5y 1
c
7
, c
10
, c
11
y
41
+ 43y
40
+ ··· 131y 9
c
8
y
41
+ 19y
40
+ ··· 34931y 1369
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.036967 + 1.143640I
0.42753 2.65969I 8.24093 + 3.41095I
u = 0.036967 1.143640I
0.42753 + 2.65969I 8.24093 3.41095I
u = 0.660133 + 0.477624I
8.57548 2.18961I 0.00248 + 3.13615I
u = 0.660133 0.477624I
8.57548 + 2.18961I 0.00248 3.13615I
u = 0.684144 + 0.440280I
4.27384 8.98491I 4.35745 + 7.89511I
u = 0.684144 0.440280I
4.27384 + 8.98491I 4.35745 7.89511I
u = 0.623584 + 0.512428I
4.55106 + 4.63624I 3.54482 1.91862I
u = 0.623584 0.512428I
4.55106 4.63624I 3.54482 + 1.91862I
u = 0.664139 + 0.434640I
2.78722 + 3.54108I 6.45783 3.37439I
u = 0.664139 0.434640I
2.78722 3.54108I 6.45783 + 3.37439I
u = 0.612358 + 0.486042I
3.00487 + 0.67608I 5.83606 3.00610I
u = 0.612358 0.486042I
3.00487 0.67608I 5.83606 + 3.00610I
u = 0.096872 + 1.325610I
3.50591 1.71670I 0
u = 0.096872 1.325610I
3.50591 + 1.71670I 0
u = 0.199961 + 1.317980I
1.40317 2.83072I 0
u = 0.199961 1.317980I
1.40317 + 2.83072I 0
u = 0.217658 + 1.339710I
2.15015 + 8.22064I 0
u = 0.217658 1.339710I
2.15015 8.22064I 0
u = 0.614559 + 0.176529I
2.60925 + 5.20134I 10.53591 7.82962I
u = 0.614559 0.176529I
2.60925 5.20134I 10.53591 + 7.82962I
u = 0.600363 + 0.128544I
3.10340 + 0.06542I 12.57860 + 1.49885I
u = 0.600363 0.128544I
3.10340 0.06542I 12.57860 1.49885I
u = 0.148692 + 1.391290I
6.92446 + 3.50964I 0
u = 0.148692 1.391290I
6.92446 3.50964I 0
u = 0.047931 + 1.399990I
5.03762 1.88806I 0
u = 0.047931 1.399990I
5.03762 + 1.88806I 0
u = 0.093172 + 0.540106I
0.77518 2.43453I 4.67673 + 2.83072I
u = 0.093172 0.540106I
0.77518 + 2.43453I 4.67673 2.83072I
u = 0.440573 + 0.308368I
1.55862 + 1.34593I 1.69201 5.88103I
u = 0.440573 0.308368I
1.55862 1.34593I 1.69201 + 5.88103I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.24207 + 1.47345I
8.94893 + 6.85378I 0
u = 0.24207 1.47345I
8.94893 6.85378I 0
u = 0.21537 + 1.47971I
9.35158 + 3.69269I 0
u = 0.21537 1.47971I
9.35158 3.69269I 0
u = 0.24862 + 1.47854I
10.4751 12.3911I 0
u = 0.24862 1.47854I
10.4751 + 12.3911I 0
u = 0.21135 + 1.49072I
11.04330 + 1.60938I 0
u = 0.21135 1.49072I
11.04330 1.60938I 0
u = 0.23235 + 1.48781I
14.9420 5.4434I 0
u = 0.23235 1.48781I
14.9420 + 5.4434I 0
u = 0.404356
0.648370 15.5210
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
41
u
40
+ ··· + u 1
c
2
, c
6
u
41
+ 15u
40
+ ··· + 5u 1
c
3
, c
4
, c
9
u
41
u
40
+ ··· + u 1
c
7
, c
10
, c
11
u
41
+ 5u
40
+ ··· 23u 3
c
8
u
41
+ u
40
+ ··· 53u 37
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
41
+ 15y
40
+ ··· + 5y 1
c
2
, c
6
y
41
+ 23y
40
+ ··· + 85y 1
c
3
, c
4
, c
9
y
41
+ 39y
40
+ ··· + 5y 1
c
7
, c
10
, c
11
y
41
+ 43y
40
+ ··· 131y 9
c
8
y
41
+ 19y
40
+ ··· 34931y 1369
8