11a
156
(K11a
156
)
A knot diagram
1
Linearized knot diagam
6 1 10 7 2 4 5 11 3 8 9
Solving Sequence
1,6
2
3,9
10 4 5 11 8 7
c
1
c
2
c
9
c
3
c
5
c
11
c
8
c
7
c
4
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.35866 × 10
48
u
51
1.57104 × 10
48
u
50
+ ··· + 3.08851 × 10
48
b + 4.21202 × 10
48
,
1.52481 × 10
49
u
51
+ 2.17161 × 10
49
u
50
+ ··· + 6.17703 × 10
48
a 1.53352 × 10
50
,
u
52
2u
51
+ ··· + 28u 4i
I
u
2
= hb 1, u
4
+ u
2
+ a + u + 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
I
v
1
= ha, b v + 2, v
2
3v + 1i
* 3 irreducible components of dim
C
= 0, with total 59 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.36 × 10
48
u
51
1.57 × 10
48
u
50
+ · · · + 3.09 × 10
48
b + 4.21 ×
10
48
, 1.52 × 10
49
u
51
+ 2.17 × 10
49
u
50
+ · · · + 6.18 × 10
48
a 1.53 ×
10
50
, u
52
2u
51
+ · · · + 28u 4i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
9
=
2.46852u
51
3.51562u
50
+ ··· 104.235u + 24.8262
0.439906u
51
+ 0.508672u
50
+ ··· + 10.8322u 1.36377
a
10
=
2.84368u
51
4.05858u
50
+ ··· 117.062u + 28.1494
0.556181u
51
+ 0.655346u
50
+ ··· + 13.1982u 1.84971
a
4
=
0.770801u
51
0.938728u
50
+ ··· 26.6783u + 6.61543
0.576000u
51
+ 0.735448u
50
+ ··· + 12.0720u 2.35162
a
5
=
u
u
3
+ u
a
11
=
1.96321u
51
3.05211u
50
+ ··· 93.6559u + 23.1027
0.0420101u
51
+ 0.0759082u
50
+ ··· + 7.19593u 1.40746
a
8
=
0.194801u
51
0.203280u
50
+ ··· 14.6063u + 4.26381
0.243803u
51
0.393136u
50
+ ··· 7.63417u + 1.60634
a
7
=
0.685271u
51
0.920162u
50
+ ··· 28.4036u + 6.67530
0.226462u
51
+ 0.539033u
50
+ ··· + 11.5948u 1.86138
a
7
=
0.685271u
51
0.920162u
50
+ ··· 28.4036u + 6.67530
0.226462u
51
+ 0.539033u
50
+ ··· + 11.5948u 1.86138
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6.29255u
51
+ 9.41983u
50
+ ··· + 269.288u 54.6478
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
52
2u
51
+ ··· + 28u 4
c
2
u
52
+ 18u
51
+ ··· 72u + 16
c
3
, c
9
u
52
2u
51
+ ··· + 64u 32
c
4
, c
6
, c
7
u
52
4u
51
+ ··· 4u + 1
c
8
, c
10
, c
11
u
52
+ 7u
51
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
52
+ 18y
51
+ ··· 72y + 16
c
2
y
52
+ 30y
51
+ ··· 41760y + 256
c
3
, c
9
y
52
36y
51
+ ··· 10752y + 1024
c
4
, c
6
, c
7
y
52
44y
51
+ ··· 116y + 1
c
8
, c
10
, c
11
y
52
53y
51
+ ··· + 13y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.075327 + 1.008500I
a = 1.022790 + 0.774917I
b = 1.190360 + 0.416488I
3.66540 + 1.40599I 0.611498 0.934044I
u = 0.075327 1.008500I
a = 1.022790 0.774917I
b = 1.190360 0.416488I
3.66540 1.40599I 0.611498 + 0.934044I
u = 0.613736 + 0.753703I
a = 1.05975 + 1.15611I
b = 0.527758 + 0.653505I
0.194027 + 1.037730I 3.66549 3.70521I
u = 0.613736 0.753703I
a = 1.05975 1.15611I
b = 0.527758 0.653505I
0.194027 1.037730I 3.66549 + 3.70521I
u = 0.772235 + 0.690068I
a = 2.53064 1.27133I
b = 1.378930 + 0.036041I
2.12355 + 1.28202I 4.52218 0.37137I
u = 0.772235 0.690068I
a = 2.53064 + 1.27133I
b = 1.378930 0.036041I
2.12355 1.28202I 4.52218 + 0.37137I
u = 0.455162 + 0.835894I
a = 0.863304 0.362503I
b = 0.263353 0.185170I
0.04711 + 1.88095I 0.11775 4.20113I
u = 0.455162 0.835894I
a = 0.863304 + 0.362503I
b = 0.263353 + 0.185170I
0.04711 1.88095I 0.11775 + 4.20113I
u = 0.729350 + 0.773257I
a = 0.108923 0.214082I
b = 0.639530 + 0.722525I
3.67881 0.13440I 8.39486 + 0.I
u = 0.729350 0.773257I
a = 0.108923 + 0.214082I
b = 0.639530 0.722525I
3.67881 + 0.13440I 8.39486 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.886765 + 0.619894I
a = 0.076581 + 0.354456I
b = 0.461865 0.742040I
0.14154 3.59160I 3.36417 + 4.10455I
u = 0.886765 0.619894I
a = 0.076581 0.354456I
b = 0.461865 + 0.742040I
0.14154 + 3.59160I 3.36417 4.10455I
u = 0.619534 + 0.655112I
a = 1.82077 0.13795I
b = 1.62890 + 0.13929I
7.94427 + 0.70276I 6.08078 4.95980I
u = 0.619534 0.655112I
a = 1.82077 + 0.13795I
b = 1.62890 0.13929I
7.94427 0.70276I 6.08078 + 4.95980I
u = 0.906927 + 0.670128I
a = 1.75190 + 0.21463I
b = 1.55769 0.21556I
10.93850 + 3.24486I 10.33648 1.31467I
u = 0.906927 0.670128I
a = 1.75190 0.21463I
b = 1.55769 + 0.21556I
10.93850 3.24486I 10.33648 + 1.31467I
u = 0.732657 + 0.866743I
a = 2.26559 + 1.11526I
b = 1.43928 + 0.05940I
5.55338 + 2.78570I 8.09999 3.02309I
u = 0.732657 0.866743I
a = 2.26559 1.11526I
b = 1.43928 0.05940I
5.55338 2.78570I 8.09999 + 3.02309I
u = 0.635920 + 0.950705I
a = 0.338552 + 0.157448I
b = 0.792480 0.758107I
0.43994 + 3.90031I 3.00000 3.18847I
u = 0.635920 0.950705I
a = 0.338552 0.157448I
b = 0.792480 + 0.758107I
0.43994 3.90031I 3.00000 + 3.18847I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.134179 + 1.161340I
a = 0.384531 0.483430I
b = 1.389650 0.050928I
3.59908 + 2.53417I 6.05449 3.57963I
u = 0.134179 1.161340I
a = 0.384531 + 0.483430I
b = 1.389650 + 0.050928I
3.59908 2.53417I 6.05449 + 3.57963I
u = 0.699619 + 0.940497I
a = 0.928509 0.600285I
b = 0.486038 0.816981I
3.16600 5.32735I 0. + 6.25644I
u = 0.699619 0.940497I
a = 0.928509 + 0.600285I
b = 0.486038 + 0.816981I
3.16600 + 5.32735I 0. 6.25644I
u = 0.155548 + 1.164430I
a = 0.234739 0.432223I
b = 0.000043 0.701161I
7.29497 2.64942I 4.44338 + 3.34527I
u = 0.155548 1.164430I
a = 0.234739 + 0.432223I
b = 0.000043 + 0.701161I
7.29497 + 2.64942I 4.44338 3.34527I
u = 0.785903 + 0.215104I
a = 0.746081 + 0.304165I
b = 0.093921 0.253947I
2.53454 + 0.36656I 2.03786 + 0.85265I
u = 0.785903 0.215104I
a = 0.746081 0.304165I
b = 0.093921 + 0.253947I
2.53454 0.36656I 2.03786 0.85265I
u = 1.19620
a = 1.56251
b = 1.37476
1.56846 5.85290
u = 0.638094 + 1.019660I
a = 1.08345 1.78360I
b = 1.50936 0.23396I
6.79512 + 4.31192I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.638094 1.019660I
a = 1.08345 + 1.78360I
b = 1.50936 + 0.23396I
6.79512 4.31192I 0
u = 0.056951 + 0.784785I
a = 0.767881 + 0.964864I
b = 0.115114 + 0.367824I
1.14630 + 1.33765I 2.67722 5.83204I
u = 0.056951 0.784785I
a = 0.767881 0.964864I
b = 0.115114 0.367824I
1.14630 1.33765I 2.67722 + 5.83204I
u = 0.702251 + 0.998907I
a = 2.13606 0.96284I
b = 1.48399 0.13222I
1.19040 6.87281I 0
u = 0.702251 0.998907I
a = 2.13606 + 0.96284I
b = 1.48399 + 0.13222I
1.19040 + 6.87281I 0
u = 0.513163 + 1.119450I
a = 0.818574 + 0.287487I
b = 0.443701 + 0.321088I
5.16137 5.07594I 0
u = 0.513163 1.119450I
a = 0.818574 0.287487I
b = 0.443701 0.321088I
5.16137 + 5.07594I 0
u = 1.064470 + 0.691714I
a = 1.70299 0.26759I
b = 1.50643 + 0.26773I
6.26071 7.29271I 0
u = 1.064470 0.691714I
a = 1.70299 + 0.26759I
b = 1.50643 0.26773I
6.26071 + 7.29271I 0
u = 0.722743 + 1.064410I
a = 0.814403 + 0.358577I
b = 0.440375 + 0.908105I
1.50501 + 9.54274I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.722743 1.064410I
a = 0.814403 0.358577I
b = 0.440375 0.908105I
1.50501 9.54274I 0
u = 0.753203 + 1.063150I
a = 1.45173 + 1.51990I
b = 1.52645 + 0.29210I
9.71492 9.38312I 0
u = 0.753203 1.063150I
a = 1.45173 1.51990I
b = 1.52645 0.29210I
9.71492 + 9.38312I 0
u = 0.620392
a = 1.74300
b = 1.55182
7.82641 14.3530
u = 0.813568 + 1.125730I
a = 1.56036 1.27231I
b = 1.52286 0.33951I
4.8388 + 14.0856I 0
u = 0.813568 1.125730I
a = 1.56036 + 1.27231I
b = 1.52286 + 0.33951I
4.8388 14.0856I 0
u = 0.34754 + 1.37165I
a = 0.417284 + 0.592951I
b = 1.303780 + 0.146210I
3.43276 5.51955I 0
u = 0.34754 1.37165I
a = 0.417284 0.592951I
b = 1.303780 0.146210I
3.43276 + 5.51955I 0
u = 0.145020 + 0.564037I
a = 0.17797 2.25336I
b = 1.043790 0.148422I
1.28226 0.71509I 4.69271 2.87667I
u = 0.145020 0.564037I
a = 0.17797 + 2.25336I
b = 1.043790 + 0.148422I
1.28226 + 0.71509I 4.69271 + 2.87667I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.390440
a = 9.46557
b = 0.911724
0.325570 41.4780
u = 0.308678
a = 0.604187
b = 0.507949
0.870137 11.8930
10
II. I
u
2
= hb 1, u
4
+ u
2
+ a + u + 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
9
=
u
4
u
2
u 1
1
a
10
=
u
4
u
2
u 1
1
a
4
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
11
=
u
4
u
2
u
1
a
8
=
1
0
a
7
=
u
4
u
2
1
u
4
u
3
+ u
2
+ 1
a
7
=
u
4
u
2
1
u
4
u
3
+ u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
+ 5u
3
7u
2
+ 5u
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
u
4
+ 2u
3
u
2
+ u 1
c
2
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
3
, c
9
u
5
c
4
u
5
+ u
4
2u
3
u
2
+ u 1
c
5
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
6
, c
7
u
5
u
4
2u
3
+ u
2
+ u + 1
c
8
(u + 1)
5
c
10
, c
11
(u 1)
5
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
2
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
3
, c
9
y
5
c
4
, c
6
, c
7
y
5
5y
4
+ 8y
3
3y
2
y 1
c
8
, c
10
, c
11
(y 1)
5
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.103562 0.890762I
b = 1.00000
1.31583 1.53058I 5.47076 + 5.40154I
u = 0.339110 0.822375I
a = 0.103562 + 0.890762I
b = 1.00000
1.31583 + 1.53058I 5.47076 5.40154I
u = 0.766826
a = 2.70062
b = 1.00000
0.756147 1.28100
u = 0.455697 + 1.200150I
a = 0.546130 + 0.402731I
b = 1.00000
4.22763 + 4.40083I 0.88874 1.16747I
u = 0.455697 1.200150I
a = 0.546130 0.402731I
b = 1.00000
4.22763 4.40083I 0.88874 + 1.16747I
14
III. I
v
1
= ha, b v + 2, v
2
3v + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
v
0
a
2
=
1
0
a
3
=
1
0
a
9
=
0
v 2
a
10
=
v 2
v 2
a
4
=
v 2
v 3
a
5
=
v
0
a
11
=
1
v + 3
a
8
=
v + 2
v + 3
a
7
=
2
v + 3
a
7
=
2
v + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
2
c
3
, c
10
, c
11
u
2
+ u 1
c
4
(u 1)
2
c
6
, c
7
(u + 1)
2
c
8
, c
9
u
2
u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
2
c
3
, c
8
, c
9
c
10
, c
11
y
2
3y + 1
c
4
, c
6
, c
7
(y 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
7.23771 1.00000
v = 2.61803
a = 0
b = 0.618034
0.657974 1.00000
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
2
(u
5
u
4
+ ··· + u 1)(u
52
2u
51
+ ··· + 28u 4)
c
2
u
2
(u
5
+ 3u
4
+ ··· u 1)(u
52
+ 18u
51
+ ··· 72u + 16)
c
3
u
5
(u
2
+ u 1)(u
52
2u
51
+ ··· + 64u 32)
c
4
((u 1)
2
)(u
5
+ u
4
+ ··· + u 1)(u
52
4u
51
+ ··· 4u + 1)
c
5
u
2
(u
5
+ u
4
+ ··· + u + 1)(u
52
2u
51
+ ··· + 28u 4)
c
6
, c
7
((u + 1)
2
)(u
5
u
4
+ ··· + u + 1)(u
52
4u
51
+ ··· 4u + 1)
c
8
((u + 1)
5
)(u
2
u 1)(u
52
+ 7u
51
+ ··· + 3u + 1)
c
9
u
5
(u
2
u 1)(u
52
2u
51
+ ··· + 64u 32)
c
10
, c
11
((u 1)
5
)(u
2
+ u 1)(u
52
+ 7u
51
+ ··· + 3u + 1)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
2
(y
5
+ 3y
4
+ ··· y 1)(y
52
+ 18y
51
+ ··· 72y + 16)
c
2
y
2
(y
5
y
4
+ ··· + 3y 1)(y
52
+ 30y
51
+ ··· 41760y + 256)
c
3
, c
9
y
5
(y
2
3y + 1)(y
52
36y
51
+ ··· 10752y + 1024)
c
4
, c
6
, c
7
((y 1)
2
)(y
5
5y
4
+ ··· y 1)(y
52
44y
51
+ ··· 116y + 1)
c
8
, c
10
, c
11
((y 1)
5
)(y
2
3y + 1)(y
52
53y
51
+ ··· + 13y + 1)
20