11a
157
(K11a
157
)
A knot diagram
1
Linearized knot diagam
6 1 10 8 2 4 11 5 3 7 9
Solving Sequence
2,5
6 1
3,9
10 8 4 11 7
c
5
c
1
c
2
c
9
c
8
c
4
c
11
c
7
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−116u
51
310u
50
+ ··· + 2304b + 7136, 3775u
52
16066u
51
+ ··· + 52992a + 229724,
u
53
+ 4u
52
+ ··· 92u 46i
I
u
2
= h−a
2
u + 2b + a 2, a
3
+ 2a
2
u au + 2a + 2, u
2
u + 1i
I
u
3
= hb + 1, 6a + u + 4, u
2
+ 2i
I
u
4
= hb
2
au + b
3
bu au b + u 1, u
2
u + 1i
I
v
1
= ha, b
3
b 1, v 1i
I
v
2
= ha, b 1, v 1i
* 5 irreducible components of dim
C
= 0, with total 65 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−116u
51
310u
50
+ · · · + 2304b + 7136, 3775u
52
16066u
51
+
· · · + 52992a + 229724, u
53
+ 4u
52
+ · · · 92u 46i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
9
=
0.0712372u
52
+ 0.303178u
51
+ ··· 8.73049u 4.33507
0.0503472u
51
+ 0.134549u
50
+ ··· 1.31510u 3.09722
a
10
=
0.184518u
52
+ 0.705088u
51
+ ··· 14.9597u 6.29167
0.0625000u
52
+ 0.159722u
51
+ ··· 1.55729u 1.65972
a
8
=
0.0712372u
52
+ 0.353525u
51
+ ··· 10.0456u 7.43229
0.0503472u
51
+ 0.134549u
50
+ ··· 1.31510u 3.09722
a
4
=
0.119226u
52
+ 0.443048u
51
+ ··· 9.10745u 4.01302
0.00520833u
52
0.0195313u
51
+ ··· + 1.50521u + 0.684896
a
11
=
0.0306839u
52
0.0914855u
51
+ ··· + 4.15433u + 4.34635
0.109375u
52
+ 0.342448u
51
+ ··· 4.84375u 0.565104
a
7
=
0.0805405u
52
0.300460u
51
+ ··· + 7.03842u + 4.68750
0.0625000u
52
0.165799u
51
+ ··· + 0.802083u + 1.18924
a
7
=
0.0805405u
52
0.300460u
51
+ ··· + 7.03842u + 4.68750
0.0625000u
52
0.165799u
51
+ ··· + 0.802083u + 1.18924
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1153
1728
u
52
+
1951
864
u
51
+ ···
7271
216
u +
1
4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
53
+ 4u
52
+ ··· 92u 46
c
2
u
53
+ 24u
52
+ ··· + 3496u 2116
c
3
, c
9
9(9u
53
18u
52
+ ··· 77u 19)
c
4
, c
8
9(9u
53
+ 18u
52
+ ··· 9u 19)
c
6
16(16u
53
16u
52
+ ··· + 103779u 3609)
c
7
, c
10
u
53
+ 6u
52
+ ··· 5832u 1706
c
11
16(16u
53
+ 32u
52
+ ··· 16641u 6003)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
53
+ 24y
52
+ ··· + 3496y 2116
c
2
y
53
+ 12y
52
+ ··· + 393508288y 4477456
c
3
, c
9
81(81y
53
3510y
52
+ ··· + 3421y 361)
c
4
, c
8
81(81y
53
2214y
52
+ ··· + 7149y 361)
c
6
256(256y
53
+ 6016y
52
+ ··· + 9.94255 × 10
9
y 1.30249 × 10
7
)
c
7
, c
10
y
53
30y
52
+ ··· 5573800y 2910436
c
11
256(256y
53
6528y
52
+ ··· 3.68087 × 10
8
y 3.60360 × 10
7
)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.809668 + 0.591571I
a = 0.38862 + 1.53061I
b = 0.262654 1.151540I
9.44289 + 4.62072I 10.24286 2.08237I
u = 0.809668 0.591571I
a = 0.38862 1.53061I
b = 0.262654 + 1.151540I
9.44289 4.62072I 10.24286 + 2.08237I
u = 0.932904 + 0.475451I
a = 0.719049 + 0.844934I
b = 1.26960 0.64309I
6.27152 10.90750I 7.14898 + 5.53843I
u = 0.932904 0.475451I
a = 0.719049 0.844934I
b = 1.26960 + 0.64309I
6.27152 + 10.90750I 7.14898 5.53843I
u = 0.880838 + 0.326928I
a = 0.164167 + 0.799269I
b = 0.573186 0.653434I
7.95194 + 1.12051I 10.90095 + 0.04798I
u = 0.880838 0.326928I
a = 0.164167 0.799269I
b = 0.573186 + 0.653434I
7.95194 1.12051I 10.90095 0.04798I
u = 0.817792 + 0.679811I
a = 0.418946 0.981125I
b = 0.303446 + 0.604240I
4.38963 + 0.38285I 8.33080 + 0.50210I
u = 0.817792 0.679811I
a = 0.418946 + 0.981125I
b = 0.303446 0.604240I
4.38963 0.38285I 8.33080 0.50210I
u = 0.994126 + 0.446360I
a = 0.477878 0.579642I
b = 1.071810 + 0.473560I
2.22320 4.60694I 5.52820 + 4.35998I
u = 0.994126 0.446360I
a = 0.477878 + 0.579642I
b = 1.071810 0.473560I
2.22320 + 4.60694I 5.52820 4.35998I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.611609 + 0.908410I
a = 1.30709 + 0.63481I
b = 0.809891 + 0.174593I
0.872134 + 1.079720I 0. + 2.41019I
u = 0.611609 0.908410I
a = 1.30709 0.63481I
b = 0.809891 0.174593I
0.872134 1.079720I 0. 2.41019I
u = 0.170302 + 1.087830I
a = 0.635126 + 0.069933I
b = 0.001690 + 0.649953I
3.08054 + 4.00121I 5.97068 4.06106I
u = 0.170302 1.087830I
a = 0.635126 0.069933I
b = 0.001690 0.649953I
3.08054 4.00121I 5.97068 + 4.06106I
u = 0.626566 + 0.643943I
a = 1.22653 0.71815I
b = 0.826327 + 0.364980I
1.59094 + 3.76796I 4.39825 7.64009I
u = 0.626566 0.643943I
a = 1.22653 + 0.71815I
b = 0.826327 0.364980I
1.59094 3.76796I 4.39825 + 7.64009I
u = 0.128610 + 1.112310I
a = 0.653956 0.300609I
b = 1.275160 0.403466I
4.15345 + 3.73758I 2.48655 3.09856I
u = 0.128610 1.112310I
a = 0.653956 + 0.300609I
b = 1.275160 + 0.403466I
4.15345 3.73758I 2.48655 + 3.09856I
u = 0.949759 + 0.608985I
a = 0.264387 + 0.875055I
b = 0.908688 0.564102I
6.99581 5.82913I 8.82739 + 6.38685I
u = 0.949759 0.608985I
a = 0.264387 0.875055I
b = 0.908688 + 0.564102I
6.99581 + 5.82913I 8.82739 6.38685I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.496009 + 1.017750I
a = 1.36846 1.83838I
b = 0.878140 + 0.204929I
0.67079 3.09135I 0. + 5.67301I
u = 0.496009 1.017750I
a = 1.36846 + 1.83838I
b = 0.878140 0.204929I
0.67079 + 3.09135I 0. 5.67301I
u = 0.724250 + 0.436534I
a = 1.15534 0.92210I
b = 1.151270 + 0.693551I
0.72806 + 5.75739I 4.99130 5.10418I
u = 0.724250 0.436534I
a = 1.15534 + 0.92210I
b = 1.151270 0.693551I
0.72806 5.75739I 4.99130 + 5.10418I
u = 0.434366 + 0.666743I
a = 0.33515 2.08440I
b = 0.607875 + 0.260312I
1.88416 0.85038I 6.25673 3.20224I
u = 0.434366 0.666743I
a = 0.33515 + 2.08440I
b = 0.607875 0.260312I
1.88416 + 0.85038I 6.25673 + 3.20224I
u = 0.212305 + 1.189430I
a = 0.778145 + 0.361047I
b = 1.237090 + 0.111866I
6.51253 1.42478I 0
u = 0.212305 1.189430I
a = 0.778145 0.361047I
b = 1.237090 0.111866I
6.51253 + 1.42478I 0
u = 0.686889 + 1.004730I
a = 0.343976 0.826525I
b = 0.085142 + 0.784336I
3.37147 6.01200I 0
u = 0.686889 1.004730I
a = 0.343976 + 0.826525I
b = 0.085142 0.784336I
3.37147 + 6.01200I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.572191 + 1.085580I
a = 0.52093 + 1.70529I
b = 1.240970 0.438253I
4.09769 6.18849I 0
u = 0.572191 1.085580I
a = 0.52093 1.70529I
b = 1.240970 + 0.438253I
4.09769 + 6.18849I 0
u = 0.601851 + 1.072670I
a = 0.51488 1.93050I
b = 1.31349 + 0.76096I
1.10548 10.82140I 0
u = 0.601851 1.072670I
a = 0.51488 + 1.93050I
b = 1.31349 0.76096I
1.10548 + 10.82140I 0
u = 0.055611 + 0.764069I
a = 0.284386 + 0.734524I
b = 0.575442 0.355913I
1.00556 + 1.44727I 1.64819 5.47738I
u = 0.055611 0.764069I
a = 0.284386 0.734524I
b = 0.575442 + 0.355913I
1.00556 1.44727I 1.64819 + 5.47738I
u = 0.673460 + 1.041740I
a = 0.955719 + 0.894786I
b = 0.132760 1.273430I
8.08301 10.18320I 0
u = 0.673460 1.041740I
a = 0.955719 0.894786I
b = 0.132760 + 1.273430I
8.08301 + 10.18320I 0
u = 0.681987 + 0.321709I
a = 0.724827 + 0.615572I
b = 1.078220 0.328843I
1.99983 + 1.37832I 0.467710 0.890691I
u = 0.681987 0.321709I
a = 0.724827 0.615572I
b = 1.078220 + 0.328843I
1.99983 1.37832I 0.467710 + 0.890691I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.780684 + 1.053130I
a = 0.293135 0.040674I
b = 0.683599 0.489569I
5.65031 0.44478I 0
u = 0.780684 1.053130I
a = 0.293135 + 0.040674I
b = 0.683599 + 0.489569I
5.65031 + 0.44478I 0
u = 0.013214 + 1.311610I
a = 0.807998 0.074133I
b = 1.204730 + 0.451072I
0.35444 8.20749I 0
u = 0.013214 1.311610I
a = 0.807998 + 0.074133I
b = 1.204730 0.451072I
0.35444 + 8.20749I 0
u = 0.680239 + 1.136940I
a = 0.55415 + 1.83786I
b = 1.35544 0.64421I
4.2476 + 16.8128I 0
u = 0.680239 1.136940I
a = 0.55415 1.83786I
b = 1.35544 + 0.64421I
4.2476 16.8128I 0
u = 0.695044 + 1.161580I
a = 0.43161 1.48086I
b = 1.215140 + 0.489831I
0.03277 + 10.71240I 0
u = 0.695044 1.161580I
a = 0.43161 + 1.48086I
b = 1.215140 0.489831I
0.03277 10.71240I 0
u = 0.621820 + 1.215440I
a = 0.821143 + 0.925875I
b = 0.823061 0.470093I
5.26202 + 4.45797I 0
u = 0.621820 1.215440I
a = 0.821143 0.925875I
b = 0.823061 + 0.470093I
5.26202 4.45797I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.12822 + 1.49963I
a = 0.590311 0.032839I
b = 0.946332 0.195707I
4.67412 0.82373I 0
u = 0.12822 1.49963I
a = 0.590311 + 0.032839I
b = 0.946332 + 0.195707I
4.67412 + 0.82373I 0
u = 0.318662
a = 2.19545
b = 0.365228
1.00464 11.4100
10
II. I
u
2
= h−a
2
u + 2b + a 2, a
3
+ 2a
2
u au + 2a + 2, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u + 1
a
1
=
u
u 1
a
3
=
1
0
a
9
=
a
1
2
a
2
u
1
2
a + 1
a
10
=
1
2
a
2
u +
1
2
a + 1
1
2
a
2
u
1
2
a + 1
a
8
=
1
2
a
2
u +
1
2
a + 1
1
2
a
2
u
1
2
a + 1
a
4
=
1
2
a
2
u +
1
2
a + 1
1
2
a
2
u +
1
2
a
2
1
2
au + a u
a
11
=
1
2
a
2
u
1
2
a 1
1
2
a
2
u +
1
2
a 1
a
7
=
1
2
a
2
u +
1
2
a + 1
1
2
a
2
u
1
2
a + 1
a
7
=
1
2
a
2
u +
1
2
a + 1
1
2
a
2
u
1
2
a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 2
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
2
u + 1)
3
c
2
(u
2
+ u + 1)
3
c
3
, c
4
, c
6
c
8
, c
9
u
6
2u
4
u
3
+ u
2
+ u + 1
c
7
, c
10
u
6
c
11
u
6
4u
5
+ 6u
4
3u
3
u
2
+ u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y
2
+ y + 1)
3
c
3
, c
4
, c
6
c
8
, c
9
y
6
4y
5
+ 6y
4
3y
3
y
2
+ y + 1
c
7
, c
10
y
6
c
11
y
6
4y
5
+ 10y
4
11y
3
+ 19y
2
3y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.412728 + 1.011420I
b = 0.218964 0.666188I
2.02988I 0. 3.46410I
u = 0.500000 + 0.866025I
a = 0.562490 0.528127I
b = 1.033350 + 0.428825I
2.02988I 0. 3.46410I
u = 0.500000 + 0.866025I
a = 0.85024 2.21534I
b = 1.252310 + 0.237364I
2.02988I 0. 3.46410I
u = 0.500000 0.866025I
a = 0.412728 1.011420I
b = 0.218964 + 0.666188I
2.02988I 0. + 3.46410I
u = 0.500000 0.866025I
a = 0.562490 + 0.528127I
b = 1.033350 0.428825I
2.02988I 0. + 3.46410I
u = 0.500000 0.866025I
a = 0.85024 + 2.21534I
b = 1.252310 0.237364I
2.02988I 0. + 3.46410I
14
III. I
u
3
= hb + 1, 6a + u + 4, u
2
+ 2i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
2
a
1
=
u
u
a
3
=
2u
3u
a
9
=
1
6
u
2
3
1
a
10
=
13
6
u
2
3
3u 1
a
8
=
1
6
u
5
3
1
a
4
=
1
6
u
2
3
1
a
11
=
23
18
u
1
9
4
3
u
1
3
a
7
=
5
18
u +
8
9
1
3
u +
5
3
a
7
=
5
18
u +
8
9
1
3
u +
5
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
c
10
u
2
+ 2
c
2
(u + 2)
2
c
3
, c
4
(u + 1)
2
c
6
, c
11
3(3u
2
2u + 1)
c
8
, c
9
(u 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
c
10
(y + 2)
2
c
2
(y 4)
2
c
3
, c
4
, c
8
c
9
(y 1)
2
c
6
, c
11
9(9y
2
+ 2y + 1)
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.666667 0.235702I
b = 1.00000
4.93480 0
u = 1.414210I
a = 0.666667 + 0.235702I
b = 1.00000
4.93480 0
18
IV. I
u
4
= hb
2
au + b
3
bu au b + u 1, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u + 1
a
1
=
u
u 1
a
3
=
1
0
a
9
=
a
b
a
10
=
b + a
b
a
8
=
b + a
b
a
4
=
b
2
ba + 1
b
2
a
11
=
bau a
2
u + a
2
u
b
2
u bau + ba + u 1
a
7
=
bau + a
2
u a
2
+ b + a + u
b
2
u + bau ba + b u + 1
a
7
=
bau + a
2
u a
2
+ b + a + u
b
2
u + bau ba + b u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 8
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
19
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
4
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
1.64493 2.02988I 6.00000 3.46410I
20
V. I
v
1
= ha, b
3
b 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
1
0
a
6
=
1
0
a
1
=
1
0
a
3
=
1
0
a
9
=
0
b
a
10
=
b
b
a
8
=
b
b
a
4
=
b
2
+ 1
b
2
a
11
=
1
b
2
a
7
=
b + 1
b
2
+ b
a
7
=
b + 1
b
2
+ b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
3
c
3
, c
4
, c
8
c
9
, c
11
u
3
u + 1
c
6
u
3
+ 2u
2
+ u + 1
c
7
, c
10
(u 1)
3
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
3
c
3
, c
4
, c
8
c
9
, c
11
y
3
2y
2
+ y 1
c
6
y
3
2y
2
3y 1
c
7
, c
10
(y 1)
3
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.662359 + 0.562280I
1.64493 6.00000
v = 1.00000
a = 0
b = 0.662359 0.562280I
1.64493 6.00000
v = 1.00000
a = 0
b = 1.32472
1.64493 6.00000
24
VI. I
v
2
= ha, b 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
1
0
a
6
=
1
0
a
1
=
1
0
a
3
=
1
0
a
9
=
0
1
a
10
=
1
1
a
8
=
1
1
a
4
=
0
1
a
11
=
1
1
a
7
=
1
1
a
7
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
10
u
c
3
, c
4
, c
11
u 1
c
6
, c
8
, c
9
u + 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
10
y
c
3
, c
4
, c
6
c
8
, c
9
, c
11
y 1
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
28
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
4
(u
2
+ 2)(u
2
u + 1)
3
(u
53
+ 4u
52
+ ··· 92u 46)
c
2
u
4
(u + 2)
2
(u
2
+ u + 1)
3
(u
53
+ 24u
52
+ ··· + 3496u 2116)
c
3
9(u 1)(u + 1)
2
(u
3
u + 1)(u
6
2u
4
u
3
+ u
2
+ u + 1)
· (9u
53
18u
52
+ ··· 77u 19)
c
4
9(u 1)(u + 1)
2
(u
3
u + 1)(u
6
2u
4
u
3
+ u
2
+ u + 1)
· (9u
53
+ 18u
52
+ ··· 9u 19)
c
6
48(u + 1)(3u
2
2u + 1)(u
3
+ 2u
2
+ u + 1)(u
6
2u
4
+ ··· + u + 1)
· (16u
53
16u
52
+ ··· + 103779u 3609)
c
7
, c
10
u
7
(u 1)
3
(u
2
+ 2)(u
53
+ 6u
52
+ ··· 5832u 1706)
c
8
9(u 1)
2
(u + 1)(u
3
u + 1)(u
6
2u
4
u
3
+ u
2
+ u + 1)
· (9u
53
+ 18u
52
+ ··· 9u 19)
c
9
9(u 1)
2
(u + 1)(u
3
u + 1)(u
6
2u
4
u
3
+ u
2
+ u + 1)
· (9u
53
18u
52
+ ··· 77u 19)
c
11
48(u 1)(3u
2
2u + 1)(u
3
u + 1)(u
6
4u
5
+ ··· + u + 1)
· (16u
53
+ 32u
52
+ ··· 16641u 6003)
29
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
4
(y + 2)
2
(y
2
+ y + 1)
3
(y
53
+ 24y
52
+ ··· + 3496y 2116)
c
2
y
4
(y 4)
2
(y
2
+ y + 1)
3
· (y
53
+ 12y
52
+ ··· + 393508288y 4477456)
c
3
, c
9
81(y 1)
3
(y
3
2y
2
+ y 1)(y
6
4y
5
+ 6y
4
3y
3
y
2
+ y + 1)
· (81y
53
3510y
52
+ ··· + 3421y 361)
c
4
, c
8
81(y 1)
3
(y
3
2y
2
+ y 1)(y
6
4y
5
+ 6y
4
3y
3
y
2
+ y + 1)
· (81y
53
2214y
52
+ ··· + 7149y 361)
c
6
2304(y 1)(9y
2
+ 2y + 1)(y
3
2y
2
3y 1)
· (y
6
4y
5
+ 6y
4
3y
3
y
2
+ y + 1)
· (256y
53
+ 6016y
52
+ ··· + 9942551577y 13024881)
c
7
, c
10
y
7
(y 1)
3
(y + 2)
2
(y
53
30y
52
+ ··· 5573800y 2910436)
c
11
2304(y 1)(9y
2
+ 2y + 1)(y
3
2y
2
+ y 1)
· (y
6
4y
5
+ 10y
4
11y
3
+ 19y
2
3y + 1)
· (256y
53
6528y
52
+ ··· 368087463y 36036009)
30