11a
158
(K11a
158
)
A knot diagram
1
Linearized knot diagam
5 1 10 8 2 11 4 6 3 7 9
Solving Sequence
2,6
5 1
3,9
10 8 4 7 11
c
5
c
1
c
2
c
9
c
8
c
4
c
7
c
11
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h23u
27
+ 131u
26
+ ··· + 4b + 148, 273u
27
+ 2147u
26
+ ··· + 8a 1460, u
28
+ 9u
27
+ ··· 52u 8i
I
u
2
= h5.27001 × 10
16
a
5
u
7
2.11866 × 10
16
a
4
u
7
+ ··· 8.58870 × 10
16
a + 2.09109 × 10
17
,
u
7
a
5
7u
7
a
4
+ ··· 92a 320, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
I
u
3
= h−2u
16
+ 4u
15
+ ··· + b + 3, 4u
16
+ 7u
15
+ ··· + a + 11, u
17
2u
16
+ ··· 4u + 1i
* 3 irreducible components of dim
C
= 0, with total 93 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h23u
27
+ 131u
26
+ · · · + 4b + 148, 273u
27
+ 2147u
26
+ · · · + 8a
1460, u
28
+ 9u
27
+ · · · 52u 8i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
9
=
34.1250u
27
268.375u
26
+ ··· + 1118.25u + 182.500
23
4
u
27
131
4
u
26
+ ··· 150u 37
a
10
=
7.12500u
27
50.3750u
26
+ ··· + 178.250u + 30.5000
21
4
u
27
+
173
4
u
26
+ ··· 236u 43
a
8
=
28.3750u
27
235.625u
26
+ ··· + 1268.25u + 219.500
23
4
u
27
131
4
u
26
+ ··· 150u 37
a
4
=
35
8
u
27
+
305
8
u
26
+ ···
923
4
u 40
9
4
u
27
+
55
4
u
26
+ ··· +
75
2
u + 9
a
7
=
127
8
u
27
1007
8
u
26
+ ··· +
1119
2
u + 92
2u
27
+
31
2
u
26
+ ···
161
2
u 15
a
11
=
77
8
u
27
671
8
u
26
+ ··· +
2185
4
u + 95
37
4
u
27
299
4
u
26
+ ··· +
681
2
u + 55
a
11
=
77
8
u
27
671
8
u
26
+ ··· +
2185
4
u + 95
37
4
u
27
299
4
u
26
+ ··· +
681
2
u + 55
(ii) Obstruction class = 1
(iii) Cusp Shapes = 72u
27
+ 580u
26
+ 1879u
25
+ 2101u
24
4589u
23
20304u
22
26684u
21
+ 10295u
20
+ 87084u
19
+ 117201u
18
+ 4207u
17
196492u
16
261463u
15
51078u
14
+ 257673u
13
+ 330937u
12
+ 85897u
11
201772u
10
247215u
9
76609u
8
+
80609u
7
+ 98024u
6
+ 35254u
5
10933u
4
17557u
3
8954u
2
2662u 434
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
28
+ 9u
27
+ ··· 52u 8
c
2
u
28
+ 13u
27
+ ··· 304u + 64
c
3
, c
4
, c
7
c
9
u
28
u
27
+ ··· 3u + 1
c
6
, c
10
u
28
+ 18u
27
+ ··· 3328u 256
c
8
, c
11
u
28
+ 2u
27
+ ··· 8u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
28
13y
27
+ ··· + 304y + 64
c
2
y
28
+ 7y
27
+ ··· 204032y + 4096
c
3
, c
4
, c
7
c
9
y
28
27y
27
+ ··· 3y + 1
c
6
, c
10
y
28
+ 14y
27
+ ··· 303104y
2
+ 65536
c
8
, c
11
y
28
12y
27
+ ··· 66y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.993549 + 0.292986I
a = 0.209833 0.434545I
b = 0.017296 + 1.007040I
2.36961 3.39893I 1.55352 + 8.34822I
u = 0.993549 0.292986I
a = 0.209833 + 0.434545I
b = 0.017296 1.007040I
2.36961 + 3.39893I 1.55352 8.34822I
u = 0.745676 + 0.599578I
a = 1.08882 + 1.35793I
b = 0.997965 + 0.424920I
1.93199 0.88418I 2.93120 + 0.94418I
u = 0.745676 0.599578I
a = 1.08882 1.35793I
b = 0.997965 0.424920I
1.93199 + 0.88418I 2.93120 0.94418I
u = 0.910751 + 0.513446I
a = 1.303570 0.508382I
b = 0.664049 + 0.374496I
1.19975 + 1.98781I 3.01378 1.84233I
u = 0.910751 0.513446I
a = 1.303570 + 0.508382I
b = 0.664049 0.374496I
1.19975 1.98781I 3.01378 + 1.84233I
u = 0.924272 + 0.615006I
a = 1.94919 + 0.56217I
b = 1.167050 0.765226I
1.38789 + 5.70099I 1.78458 5.41589I
u = 0.924272 0.615006I
a = 1.94919 0.56217I
b = 1.167050 + 0.765226I
1.38789 5.70099I 1.78458 + 5.41589I
u = 0.582336 + 0.951705I
a = 1.14682 0.86852I
b = 1.45377 0.81817I
13.5292 10.0747I 8.45933 + 4.17008I
u = 0.582336 0.951705I
a = 1.14682 + 0.86852I
b = 1.45377 + 0.81817I
13.5292 + 10.0747I 8.45933 4.17008I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.443366 + 1.056140I
a = 0.787450 + 0.068648I
b = 1.080890 0.000686I
12.38150 + 4.38665I 10.97973 3.34546I
u = 0.443366 1.056140I
a = 0.787450 0.068648I
b = 1.080890 + 0.000686I
12.38150 4.38665I 10.97973 + 3.34546I
u = 0.807574 + 0.208228I
a = 0.576875 + 0.559894I
b = 0.512192 1.107170I
1.14045 + 1.47239I 6.24854 + 6.39498I
u = 0.807574 0.208228I
a = 0.576875 0.559894I
b = 0.512192 + 1.107170I
1.14045 1.47239I 6.24854 6.39498I
u = 0.593204 + 1.035470I
a = 0.760509 + 0.545380I
b = 1.104210 + 0.569568I
7.89930 3.44261I 8.17074 + 2.94837I
u = 0.593204 1.035470I
a = 0.760509 0.545380I
b = 1.104210 0.569568I
7.89930 + 3.44261I 8.17074 2.94837I
u = 1.31909
a = 0.297585
b = 0.125254
3.01060 14.4720
u = 1.106870 + 0.732140I
a = 1.60551 0.89150I
b = 1.46289 + 1.05428I
11.9038 + 16.2350I 6.36027 8.32086I
u = 1.106870 0.732140I
a = 1.60551 + 0.89150I
b = 1.46289 1.05428I
11.9038 16.2350I 6.36027 + 8.32086I
u = 1.320980 + 0.142620I
a = 0.245968 + 0.237735I
b = 0.872613 0.596296I
5.89990 8.09391I 4.42894 + 6.82969I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.320980 0.142620I
a = 0.245968 0.237735I
b = 0.872613 + 0.596296I
5.89990 + 8.09391I 4.42894 6.82969I
u = 1.124600 + 0.770804I
a = 1.196350 + 0.572951I
b = 1.094850 0.891823I
6.23596 + 9.95004I 5.25531 7.03832I
u = 1.124600 0.770804I
a = 1.196350 0.572951I
b = 1.094850 + 0.891823I
6.23596 9.95004I 5.25531 + 7.03832I
u = 1.22157 + 0.75184I
a = 0.498779 0.680355I
b = 0.885139 + 0.340742I
10.00870 + 2.13523I 9.70507 + 0.I
u = 1.22157 0.75184I
a = 0.498779 + 0.680355I
b = 0.885139 0.340742I
10.00870 2.13523I 9.70507 + 0.I
u = 1.55763
a = 0.154610
b = 0.615944
0.410918 16.4090
u = 0.088743 + 0.380871I
a = 0.555578 1.006500I
b = 0.189785 0.401445I
0.217297 + 1.036000I 3.27495 6.74585I
u = 0.088743 0.380871I
a = 0.555578 + 1.006500I
b = 0.189785 + 0.401445I
0.217297 1.036000I 3.27495 + 6.74585I
7
II. I
u
2
= h5.27 × 10
16
a
5
u
7
2.12 × 10
16
a
4
u
7
+ · · · 8.59 × 10
16
a + 2.09 ×
10
17
, u
7
a
5
7u
7
a
4
+ · · · 92a 320, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
9
=
a
0.382668a
5
u
7
+ 0.153841a
4
u
7
+ ··· + 0.623646a 1.51839
a
10
=
0.638309a
5
u
7
+ 0.178480a
4
u
7
+ ··· + 0.861026a + 0.0250433
0.274885a
5
u
7
+ 0.113800a
4
u
7
+ ··· + 0.225598a 1.44869
a
8
=
0.382668a
5
u
7
0.153841a
4
u
7
+ ··· + 0.376354a + 1.51839
0.382668a
5
u
7
+ 0.153841a
4
u
7
+ ··· + 0.623646a 1.51839
a
4
=
0.941009a
5
u
7
0.361240a
4
u
7
+ ··· + 0.0598849a + 1.73126
0.895289a
5
u
7
+ 0.368189a
4
u
7
+ ··· + 0.398274a + 2.83473
a
7
=
0.830940a
5
u
7
0.669583a
4
u
7
+ ··· 0.192170a + 8.12188
0.629283a
5
u
7
+ 0.240763a
4
u
7
+ ··· 0.268495a 0.378118
a
11
=
0.517443a
5
u
7
0.185517a
4
u
7
+ ··· 0.234948a + 3.55145
0.904169a
5
u
7
+ 0.354563a
4
u
7
+ ··· 0.0428966a 0.826810
a
11
=
0.517443a
5
u
7
0.185517a
4
u
7
+ ··· 0.234948a + 3.55145
0.904169a
5
u
7
+ 0.354563a
4
u
7
+ ··· 0.0428966a 0.826810
(ii) Obstruction class = 1
(iii) Cusp Shapes =
151426107279833992
137717486950419293
u
7
a
5
+
62688797470204452
137717486950419293
u
7
a
4
+ ··· +
124275431271284696
137717486950419293
a
1073475726019287126
137717486950419293
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
6
c
2
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
6
c
3
, c
4
, c
7
c
9
u
48
u
47
+ ··· + 348u 701
c
6
, c
10
(u
3
u
2
+ 2u 1)
16
c
8
, c
11
u
48
+ 9u
47
+ ··· + 1494u + 1151
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
6
c
2
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
6
c
3
, c
4
, c
7
c
9
y
48
45y
47
+ ··· + 8666632y + 491401
c
6
, c
10
(y
3
+ 3y
2
+ 2y 1)
16
c
8
, c
11
y
48
17y
47
+ ··· 69505684y + 1324801
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 0.990670 0.401955I
b = 1.053470 + 0.110154I
6.91828 1.69689I 8.09453 + 2.46866I
u = 0.570868 + 0.730671I
a = 0.914373 0.642003I
b = 1.163590 0.530931I
2.78069 + 1.13123I 1.56526 0.51079I
u = 0.570868 + 0.730671I
a = 1.276700 + 0.398261I
b = 0.650677 + 0.052375I
2.78069 + 1.13123I 1.56526 0.51079I
u = 0.570868 + 0.730671I
a = 1.65233 + 0.32775I
b = 0.929486 + 0.952208I
6.91828 1.69689I 8.09453 + 2.46866I
u = 0.570868 + 0.730671I
a = 1.66990 0.72433I
b = 0.804262 0.625053I
6.91828 + 3.95936I 8.09453 3.49024I
u = 0.570868 + 0.730671I
a = 1.48925 + 1.36516I
b = 1.87266 + 0.67520I
6.91828 + 3.95936I 8.09453 3.49024I
u = 0.570868 0.730671I
a = 0.990670 + 0.401955I
b = 1.053470 0.110154I
6.91828 + 1.69689I 8.09453 2.46866I
u = 0.570868 0.730671I
a = 0.914373 + 0.642003I
b = 1.163590 + 0.530931I
2.78069 1.13123I 1.56526 + 0.51079I
u = 0.570868 0.730671I
a = 1.276700 0.398261I
b = 0.650677 0.052375I
2.78069 1.13123I 1.56526 + 0.51079I
u = 0.570868 0.730671I
a = 1.65233 0.32775I
b = 0.929486 0.952208I
6.91828 + 1.69689I 8.09453 2.46866I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 0.730671I
a = 1.66990 + 0.72433I
b = 0.804262 + 0.625053I
6.91828 3.95936I 8.09453 + 3.49024I
u = 0.570868 0.730671I
a = 1.48925 1.36516I
b = 1.87266 0.67520I
6.91828 3.95936I 8.09453 + 3.49024I
u = 0.855237 + 0.665892I
a = 0.600223 + 0.587228I
b = 1.14799 + 0.96444I
5.98076 + 2.57849I 4.70341 3.56796I
u = 0.855237 + 0.665892I
a = 1.53059 + 0.50816I
b = 0.916060 0.214976I
10.11830 0.24963I 11.23268 0.58851I
u = 0.855237 + 0.665892I
a = 1.50463 + 0.95331I
b = 0.774749 1.086430I
5.98076 + 2.57849I 4.70341 3.56796I
u = 0.855237 + 0.665892I
a = 0.12321 1.87124I
b = 1.73522 2.00771I
10.11830 + 5.40662I 11.23268 6.54740I
u = 0.855237 + 0.665892I
a = 1.04971 1.99633I
b = 0.620056 + 0.252279I
10.11830 + 5.40662I 11.23268 6.54740I
u = 0.855237 + 0.665892I
a = 2.43610 0.22189I
b = 1.19848 + 2.25399I
10.11830 0.24963I 11.23268 0.58851I
u = 0.855237 0.665892I
a = 0.600223 0.587228I
b = 1.14799 0.96444I
5.98076 2.57849I 4.70341 + 3.56796I
u = 0.855237 0.665892I
a = 1.53059 0.50816I
b = 0.916060 + 0.214976I
10.11830 + 0.24963I 11.23268 + 0.58851I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.855237 0.665892I
a = 1.50463 0.95331I
b = 0.774749 + 1.086430I
5.98076 2.57849I 4.70341 + 3.56796I
u = 0.855237 0.665892I
a = 0.12321 + 1.87124I
b = 1.73522 + 2.00771I
10.11830 5.40662I 11.23268 + 6.54740I
u = 0.855237 0.665892I
a = 1.04971 + 1.99633I
b = 0.620056 0.252279I
10.11830 5.40662I 11.23268 + 6.54740I
u = 0.855237 0.665892I
a = 2.43610 + 0.22189I
b = 1.19848 2.25399I
10.11830 + 0.24963I 11.23268 + 0.58851I
u = 1.09818
a = 0.841554 + 0.067108I
b = 0.863475 + 0.758464I
1.45620 + 2.82812I 1.64572 2.97945I
u = 1.09818
a = 0.841554 0.067108I
b = 0.863475 0.758464I
1.45620 2.82812I 1.64572 + 2.97945I
u = 1.09818
a = 0.137898 + 0.764353I
b = 0.757872 0.848111I
1.45620 + 2.82812I 1.64572 2.97945I
u = 1.09818
a = 0.137898 0.764353I
b = 0.757872 + 0.848111I
1.45620 2.82812I 1.64572 + 2.97945I
u = 1.09818
a = 0.421321 + 0.253638I
b = 0.045426 0.584427I
2.68138 4.88355 + 0.I
u = 1.09818
a = 0.421321 0.253638I
b = 0.045426 + 0.584427I
2.68138 4.88355 + 0.I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.031810 + 0.655470I
a = 0.196743 1.047410I
b = 1.107250 0.667224I
5.57925 3.61542I 6.08131 + 2.31472I
u = 1.031810 + 0.655470I
a = 0.573708 + 1.184710I
b = 0.754638 0.318605I
5.57925 3.61542I 6.08131 + 2.31472I
u = 1.031810 + 0.655470I
a = 1.220390 + 0.580900I
b = 0.873736 0.299034I
1.44167 6.44354I 0.44796 + 5.29417I
u = 1.031810 + 0.655470I
a = 1.35060 0.80955I
b = 1.11587 + 0.94162I
1.44167 6.44354I 0.44796 + 5.29417I
u = 1.031810 + 0.655470I
a = 1.93940 0.78420I
b = 0.981258 + 0.682787I
5.57925 9.27166I 6.08131 + 8.27362I
u = 1.031810 + 0.655470I
a = 1.86513 + 1.17845I
b = 1.89676 1.19078I
5.57925 9.27166I 6.08131 + 8.27362I
u = 1.031810 0.655470I
a = 0.196743 + 1.047410I
b = 1.107250 + 0.667224I
5.57925 + 3.61542I 6.08131 2.31472I
u = 1.031810 0.655470I
a = 0.573708 1.184710I
b = 0.754638 + 0.318605I
5.57925 + 3.61542I 6.08131 2.31472I
u = 1.031810 0.655470I
a = 1.220390 0.580900I
b = 0.873736 + 0.299034I
1.44167 + 6.44354I 0.44796 5.29417I
u = 1.031810 0.655470I
a = 1.35060 + 0.80955I
b = 1.11587 0.94162I
1.44167 + 6.44354I 0.44796 5.29417I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.031810 0.655470I
a = 1.93940 + 0.78420I
b = 0.981258 0.682787I
5.57925 + 9.27166I 6.08131 8.27362I
u = 1.031810 0.655470I
a = 1.86513 1.17845I
b = 1.89676 + 1.19078I
5.57925 + 9.27166I 6.08131 8.27362I
u = 0.603304
a = 1.46576
b = 1.19124
2.97631 2.91400
u = 0.603304
a = 1.78561 + 1.58163I
b = 1.40424 0.45076I
7.11390 + 2.82812I 3.61529 2.97945I
u = 0.603304
a = 1.78561 1.58163I
b = 1.40424 + 0.45076I
7.11390 2.82812I 3.61529 + 2.97945I
u = 0.603304
a = 2.85883
b = 0.156244
2.97631 2.91400
u = 0.603304
a = 3.40485 + 0.20705I
b = 0.162019 + 0.878843I
7.11390 2.82812I 3.61529 + 2.97945I
u = 0.603304
a = 3.40485 0.20705I
b = 0.162019 0.878843I
7.11390 + 2.82812I 3.61529 2.97945I
15
III. I
u
3
=
h−2u
16
+4u
15
+· · ·+b+3, 4u
16
+7u
15
+· · ·+a+11, u
17
2u
16
+· · ·4u+1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
9
=
4u
16
7u
15
+ ··· + 18u 11
2u
16
4u
15
+ ··· + 5u 3
a
10
=
3u
16
6u
15
+ ··· + 14u 10
2u
16
3u
15
+ ··· + 4u 2
a
8
=
2u
16
3u
15
+ ··· + 13u 8
2u
16
4u
15
+ ··· + 5u 3
a
4
=
3u
16
+ 3u
15
+ ··· 4u + 6
u
16
2u
15
+ ··· + 6u 1
a
7
=
3u
15
4u
14
+ ··· + u + 4
u
14
2u
13
+ ··· 5u + 2
a
11
=
3u
16
+ 4u
15
+ ··· 8u 1
u
16
+ 6u
14
+ ··· 7u + 1
a
11
=
3u
16
+ 4u
15
+ ··· 8u 1
u
16
+ 6u
14
+ ··· 7u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
16
5u
15
+ 5u
14
+ 10u
13
22u
12
5u
11
+ 41u
10
8u
9
60u
8
+
43u
7
+ 36u
6
40u
5
19u
4
+ 38u
3
3u
2
13u + 15
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 2u
16
+ ··· 4u 1
c
2
u
17
+ 10u
16
+ ··· + 16u + 1
c
3
, c
7
u
17
+ u
16
+ ··· u 1
c
4
, c
9
u
17
u
16
+ ··· u + 1
c
5
u
17
2u
16
+ ··· 4u + 1
c
6
u
17
+ u
16
+ ··· 3u
2
1
c
8
, c
11
u
17
2u
16
+ ··· + 6u 1
c
10
u
17
u
16
+ ··· + 3u
2
+ 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
17
10y
16
+ ··· + 16y 1
c
2
y
17
+ 2y
16
+ ··· + 84y 1
c
3
, c
4
, c
7
c
9
y
17
19y
16
+ ··· 15y 1
c
6
, c
10
y
17
+ 11y
16
+ ··· 6y 1
c
8
, c
11
y
17
4y
16
+ ··· + 20y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.629702 + 0.775693I
a = 1.25479 0.72695I
b = 1.193870 0.354429I
4.15597 + 1.39250I 9.19957 1.48197I
u = 0.629702 0.775693I
a = 1.25479 + 0.72695I
b = 1.193870 + 0.354429I
4.15597 1.39250I 9.19957 + 1.48197I
u = 0.767528 + 0.633722I
a = 0.701511 + 0.032570I
b = 0.617635 1.158100I
8.95462 + 4.19752I 7.32669 3.30513I
u = 0.767528 0.633722I
a = 0.701511 0.032570I
b = 0.617635 + 1.158100I
8.95462 4.19752I 7.32669 + 3.30513I
u = 0.878628 + 0.059193I
a = 0.358916 0.547631I
b = 0.501796 + 0.960589I
1.39291 1.89045I 2.83864 + 7.38305I
u = 0.878628 0.059193I
a = 0.358916 + 0.547631I
b = 0.501796 0.960589I
1.39291 + 1.89045I 2.83864 7.38305I
u = 0.696362 + 0.452869I
a = 2.86004 0.26335I
b = 1.144470 0.618358I
8.03048 + 1.78919I 8.52582 + 1.37229I
u = 0.696362 0.452869I
a = 2.86004 + 0.26335I
b = 1.144470 + 0.618358I
8.03048 1.78919I 8.52582 1.37229I
u = 0.957492 + 0.679960I
a = 0.301934 0.283727I
b = 0.136055 + 0.999061I
8.34209 + 0.91407I 6.60931 1.66194I
u = 0.957492 0.679960I
a = 0.301934 + 0.283727I
b = 0.136055 0.999061I
8.34209 0.91407I 6.60931 + 1.66194I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.076890 + 0.501752I
a = 0.10184 + 1.47628I
b = 0.871848 + 0.190457I
6.67124 5.72894I 6.82775 + 5.57933I
u = 1.076890 0.501752I
a = 0.10184 1.47628I
b = 0.871848 0.190457I
6.67124 + 5.72894I 6.82775 5.57933I
u = 1.011850 + 0.683838I
a = 1.52981 0.82939I
b = 1.27766 + 0.69304I
3.02844 6.91224I 6.62356 + 6.67706I
u = 1.011850 0.683838I
a = 1.52981 + 0.82939I
b = 1.27766 0.69304I
3.02844 + 6.91224I 6.62356 6.67706I
u = 1.38732
a = 0.141915
b = 0.470019
2.77503 19.9250
u = 1.43895
a = 0.437990
b = 0.276644
0.814223 3.92340
u = 0.326049
a = 3.85316
b = 0.846698
3.67637 11.4500
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
8
u
7
+ ··· + 2u 1)
6
)(u
17
+ 2u
16
+ ··· 4u 1)
· (u
28
+ 9u
27
+ ··· 52u 8)
c
2
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
6
· (u
17
+ 10u
16
+ ··· + 16u + 1)(u
28
+ 13u
27
+ ··· 304u + 64)
c
3
, c
7
(u
17
+ u
16
+ ··· u 1)(u
28
u
27
+ ··· 3u + 1)
· (u
48
u
47
+ ··· + 348u 701)
c
4
, c
9
(u
17
u
16
+ ··· u + 1)(u
28
u
27
+ ··· 3u + 1)
· (u
48
u
47
+ ··· + 348u 701)
c
5
((u
8
u
7
+ ··· + 2u 1)
6
)(u
17
2u
16
+ ··· 4u + 1)
· (u
28
+ 9u
27
+ ··· 52u 8)
c
6
((u
3
u
2
+ 2u 1)
16
)(u
17
+ u
16
+ ··· 3u
2
1)
· (u
28
+ 18u
27
+ ··· 3328u 256)
c
8
, c
11
(u
17
2u
16
+ ··· + 6u 1)(u
28
+ 2u
27
+ ··· 8u + 1)
· (u
48
+ 9u
47
+ ··· + 1494u + 1151)
c
10
((u
3
u
2
+ 2u 1)
16
)(u
17
u
16
+ ··· + 3u
2
+ 1)
· (u
28
+ 18u
27
+ ··· 3328u 256)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
6
· (y
17
10y
16
+ ··· + 16y 1)(y
28
13y
27
+ ··· + 304y + 64)
c
2
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
6
· (y
17
+ 2y
16
+ ··· + 84y 1)(y
28
+ 7y
27
+ ··· 204032y + 4096)
c
3
, c
4
, c
7
c
9
(y
17
19y
16
+ ··· 15y 1)(y
28
27y
27
+ ··· 3y + 1)
· (y
48
45y
47
+ ··· + 8666632y + 491401)
c
6
, c
10
((y
3
+ 3y
2
+ 2y 1)
16
)(y
17
+ 11y
16
+ ··· 6y 1)
· (y
28
+ 14y
27
+ ··· 303104y
2
+ 65536)
c
8
, c
11
(y
17
4y
16
+ ··· + 20y 1)(y
28
12y
27
+ ··· 66y + 1)
· (y
48
17y
47
+ ··· 69505684y + 1324801)
22