11a
168
(K11a
168
)
A knot diagram
1
Linearized knot diagam
6 1 11 8 2 10 5 4 3 7 9
Solving Sequence
6,10
7
2,11
1 3 5 8 4 9
c
6
c
10
c
1
c
2
c
5
c
7
c
4
c
9
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.78806 × 10
130
u
65
3.53692 × 10
130
u
64
+ ··· + 1.19375 × 10
131
b 9.79607 × 10
131
,
1.13631 × 10
131
u
65
+ 6.95957 × 10
131
u
64
+ ··· + 2.74563 × 10
132
a 8.44042 × 10
133
,
u
66
+ 3u
65
+ ··· 49u + 23i
I
u
2
= hu
13
+ u
12
7u
11
7u
10
+ 19u
9
+ 21u
8
26u
7
35u
6
+ 19u
5
+ 33u
4
4u
3
18u
2
+ b u + 4,
u
13
+ 2u
12
5u
11
12u
10
+ 7u
9
+ 28u
8
+ 2u
7
33u
6
14u
5
+ 20u
4
+ 16u
3
5u
2
+ a 5u,
u
14
+ 2u
13
5u
12
12u
11
+ 7u
10
+ 28u
9
+ 2u
8
33u
7
13u
6
+ 21u
5
+ 14u
4
7u
3
6u
2
+ u + 1i
I
u
3
= h−u
5
+ 2u
4
+ u
3
2u
2
+ b u, u
5
+ 2u
4
+ a u,
u
10
4u
9
+ 2u
8
+ 8u
7
5u
6
9u
5
+ 4u
4
+ 5u
3
u
2
u + 1i
* 3 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.79 × 10
130
u
65
3.54 × 10
130
u
64
+ · · · + 1.19 × 10
131
b 9.80 ×
10
131
, 1.14 × 10
131
u
65
+ 6.96 × 10
131
u
64
+ · · · + 2.75 × 10
132
a 8.44 ×
10
133
, u
66
+ 3u
65
+ · · · 49u + 23i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
2
=
0.0413863u
65
0.253478u
64
+ ··· 71.6967u + 30.7413
0.149785u
65
+ 0.296286u
64
+ ··· 25.4119u + 8.20610
a
11
=
u
u
3
+ u
a
1
=
0.108398u
65
0.549764u
64
+ ··· 46.2848u + 22.5351
0.149785u
65
+ 0.296286u
64
+ ··· 25.4119u + 8.20610
a
3
=
0.265019u
65
0.684530u
64
+ ··· + 16.5444u 1.80031
0.0970785u
65
+ 0.246976u
64
+ ··· 17.2639u + 5.68359
a
5
=
0.0633462u
65
+ 0.131815u
64
+ ··· + 22.7802u 6.63331
0.0144495u
65
+ 0.0765866u
64
+ ··· + 23.6745u 8.68302
a
8
=
0.241521u
65
+ 0.174805u
64
+ ··· 90.4271u + 35.3903
0.0842047u
65
+ 0.187816u
64
+ ··· 24.7015u + 6.71251
a
4
=
0.352721u
65
0.894904u
64
+ ··· + 18.6230u 2.09481
0.119566u
65
+ 0.307098u
64
+ ··· 14.7416u + 4.76525
a
9
=
0.204510u
65
0.292070u
64
+ ··· + 36.4550u 17.5683
0.00530887u
65
+ 0.0353219u
64
+ ··· + 5.95418u 2.01143
a
9
=
0.204510u
65
0.292070u
64
+ ··· + 36.4550u 17.5683
0.00530887u
65
+ 0.0353219u
64
+ ··· + 5.95418u 2.01143
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.39895u
65
+ 3.59121u
64
+ ··· 107.584u + 25.1145
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
66
+ 5u
65
+ ··· + 70u + 28
c
2
u
66
+ 27u
65
+ ··· + 5684u + 784
c
3
u
66
+ 7u
65
+ ··· 293u + 131
c
4
, c
7
, c
8
u
66
2u
65
+ ··· 20u + 1
c
6
, c
10
u
66
+ 3u
65
+ ··· 49u + 23
c
9
u
66
+ 2u
64
+ ··· + 24u + 1
c
11
u
66
+ 5u
65
+ ··· + 3276u + 667
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
66
+ 27y
65
+ ··· + 5684y + 784
c
2
y
66
+ 27y
65
+ ··· + 5306896y + 614656
c
3
y
66
15y
65
+ ··· 380599y + 17161
c
4
, c
7
, c
8
y
66
+ 72y
65
+ ··· 2y + 1
c
6
, c
10
y
66
33y
65
+ ··· 12015y + 529
c
9
y
66
+ 4y
65
+ ··· 30y + 1
c
11
y
66
15y
65
+ ··· 11892756y + 444889
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.163567 + 0.974073I
a = 0.696136 0.268743I
b = 0.580597 1.004650I
1.17857 + 6.31445I 0. 8.26296I
u = 0.163567 0.974073I
a = 0.696136 + 0.268743I
b = 0.580597 + 1.004650I
1.17857 6.31445I 0. + 8.26296I
u = 0.910079 + 0.369691I
a = 0.303793 0.056648I
b = 0.458628 + 0.318939I
1.48654 + 0.69916I 4.61313 2.12935I
u = 0.910079 0.369691I
a = 0.303793 + 0.056648I
b = 0.458628 0.318939I
1.48654 0.69916I 4.61313 + 2.12935I
u = 0.975903 + 0.320029I
a = 0.65293 2.09713I
b = 0.603233 1.184400I
1.41728 5.05455I 0. + 12.20236I
u = 0.975903 0.320029I
a = 0.65293 + 2.09713I
b = 0.603233 + 1.184400I
1.41728 + 5.05455I 0. 12.20236I
u = 0.881923 + 0.307874I
a = 0.200444 + 0.477752I
b = 0.744898 0.630242I
0.032145 + 0.573668I 0. 4.06060I
u = 0.881923 0.307874I
a = 0.200444 0.477752I
b = 0.744898 + 0.630242I
0.032145 0.573668I 0. + 4.06060I
u = 0.950720 + 0.502350I
a = 0.877967 + 0.026202I
b = 1.016380 + 0.270524I
6.72384 0.00894I 0
u = 0.950720 0.502350I
a = 0.877967 0.026202I
b = 1.016380 0.270524I
6.72384 + 0.00894I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.895747 + 0.113324I
a = 0.210467 0.615238I
b = 0.723006 0.613380I
0.35093 2.50495I 1.76854 + 6.87309I
u = 0.895747 0.113324I
a = 0.210467 + 0.615238I
b = 0.723006 + 0.613380I
0.35093 + 2.50495I 1.76854 6.87309I
u = 0.513355 + 0.969879I
a = 0.554489 0.295569I
b = 0.061422 + 0.772480I
3.81529 4.03349I 0
u = 0.513355 0.969879I
a = 0.554489 + 0.295569I
b = 0.061422 0.772480I
3.81529 + 4.03349I 0
u = 1.003490 + 0.462245I
a = 1.38592 + 1.18971I
b = 0.658324 + 1.027690I
1.18063 + 5.94761I 0
u = 1.003490 0.462245I
a = 1.38592 1.18971I
b = 0.658324 1.027690I
1.18063 5.94761I 0
u = 0.213343 + 0.781690I
a = 1.040630 + 0.205621I
b = 0.630515 + 0.547682I
2.50610 + 1.55549I 4.46271 2.30891I
u = 0.213343 0.781690I
a = 1.040630 0.205621I
b = 0.630515 0.547682I
2.50610 1.55549I 4.46271 + 2.30891I
u = 0.435912 + 0.662170I
a = 0.380983 + 0.238349I
b = 0.160229 + 0.802581I
1.40850 + 1.04300I 5.70485 4.49521I
u = 0.435912 0.662170I
a = 0.380983 0.238349I
b = 0.160229 0.802581I
1.40850 1.04300I 5.70485 + 4.49521I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.142840 + 0.408088I
a = 0.12099 2.00122I
b = 0.017416 1.388480I
0.42442 + 7.17415I 0
u = 1.142840 0.408088I
a = 0.12099 + 2.00122I
b = 0.017416 + 1.388480I
0.42442 7.17415I 0
u = 1.120610 + 0.507476I
a = 0.213239 + 0.187929I
b = 0.870327 0.488823I
0.11868 6.20190I 0
u = 1.120610 0.507476I
a = 0.213239 0.187929I
b = 0.870327 + 0.488823I
0.11868 + 6.20190I 0
u = 0.348013 + 0.685297I
a = 0.385405 + 0.184638I
b = 0.782208 + 0.911468I
8.00774 2.72139I 5.67340 + 3.59670I
u = 0.348013 0.685297I
a = 0.385405 0.184638I
b = 0.782208 0.911468I
8.00774 + 2.72139I 5.67340 3.59670I
u = 1.174490 + 0.439061I
a = 0.55437 + 2.35095I
b = 0.581613 + 0.937637I
5.38489 7.07352I 0
u = 1.174490 0.439061I
a = 0.55437 2.35095I
b = 0.581613 0.937637I
5.38489 + 7.07352I 0
u = 1.082830 + 0.650499I
a = 0.763412 0.125255I
b = 0.584235 0.734442I
6.02312 2.42646I 0
u = 1.082830 0.650499I
a = 0.763412 + 0.125255I
b = 0.584235 + 0.734442I
6.02312 + 2.42646I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.240570 + 0.249436I
a = 0.25707 1.89384I
b = 0.025398 1.232230I
6.29461 3.96507I 0
u = 1.240570 0.249436I
a = 0.25707 + 1.89384I
b = 0.025398 + 1.232230I
6.29461 + 3.96507I 0
u = 0.456533 + 1.193620I
a = 0.479732 + 0.721690I
b = 0.787442 + 0.623044I
9.11482 3.60155I 0
u = 0.456533 1.193620I
a = 0.479732 0.721690I
b = 0.787442 0.623044I
9.11482 + 3.60155I 0
u = 0.970943 + 0.846933I
a = 0.110406 0.251793I
b = 0.601898 + 0.133589I
3.63388 3.20673I 0
u = 0.970943 0.846933I
a = 0.110406 + 0.251793I
b = 0.601898 0.133589I
3.63388 + 3.20673I 0
u = 1.233540 + 0.392626I
a = 0.21257 2.00569I
b = 0.71720 1.24384I
3.82726 + 6.26660I 0
u = 1.233540 0.392626I
a = 0.21257 + 2.00569I
b = 0.71720 + 1.24384I
3.82726 6.26660I 0
u = 1.317410 + 0.143765I
a = 0.58844 1.71642I
b = 0.100771 0.992542I
4.86658 + 0.02437I 0
u = 1.317410 0.143765I
a = 0.58844 + 1.71642I
b = 0.100771 + 0.992542I
4.86658 0.02437I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.599634 + 0.293642I
a = 0.360866 1.059790I
b = 1.107300 0.801620I
7.97540 + 3.77535I 12.7373 9.7511I
u = 0.599634 0.293642I
a = 0.360866 + 1.059790I
b = 1.107300 + 0.801620I
7.97540 3.77535I 12.7373 + 9.7511I
u = 1.189390 + 0.620718I
a = 0.11891 + 1.45206I
b = 0.333461 + 1.110410I
0.1230110 + 0.0150349I 0
u = 1.189390 0.620718I
a = 0.11891 1.45206I
b = 0.333461 1.110410I
0.1230110 0.0150349I 0
u = 1.229960 + 0.588843I
a = 0.98305 + 1.56765I
b = 0.665256 + 1.110210I
1.99580 11.89200I 0
u = 1.229960 0.588843I
a = 0.98305 1.56765I
b = 0.665256 1.110210I
1.99580 + 11.89200I 0
u = 0.626363 + 0.088665I
a = 2.69216 3.52949I
b = 0.309304 0.848107I
3.63938 2.52827I 1.147337 0.754292I
u = 0.626363 0.088665I
a = 2.69216 + 3.52949I
b = 0.309304 + 0.848107I
3.63938 + 2.52827I 1.147337 + 0.754292I
u = 1.218200 + 0.688747I
a = 0.95882 1.32677I
b = 0.514831 1.018630I
3.18756 + 4.76965I 0
u = 1.218200 0.688747I
a = 0.95882 + 1.32677I
b = 0.514831 + 1.018630I
3.18756 4.76965I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.582346 + 0.119440I
a = 0.65201 + 3.57882I
b = 0.423495 + 1.216100I
2.04523 4.42740I 0.06553 + 3.55579I
u = 0.582346 0.119440I
a = 0.65201 3.57882I
b = 0.423495 1.216100I
2.04523 + 4.42740I 0.06553 3.55579I
u = 1.214820 + 0.714561I
a = 0.338561 + 0.013564I
b = 0.986535 0.471169I
6.64257 + 10.26800I 0
u = 1.214820 0.714561I
a = 0.338561 0.013564I
b = 0.986535 + 0.471169I
6.64257 10.26800I 0
u = 0.29930 + 1.39073I
a = 0.274401 0.646909I
b = 0.664803 1.023810I
7.89254 9.07916I 0
u = 0.29930 1.39073I
a = 0.274401 + 0.646909I
b = 0.664803 + 1.023810I
7.89254 + 9.07916I 0
u = 0.477375 + 0.237133I
a = 1.096490 0.505493I
b = 0.681358 + 0.179083I
1.48045 + 0.06659I 8.57715 + 1.33589I
u = 0.477375 0.237133I
a = 1.096490 + 0.505493I
b = 0.681358 0.179083I
1.48045 0.06659I 8.57715 1.33589I
u = 1.51195 + 0.21374I
a = 0.104633 + 1.369450I
b = 0.342184 + 0.961816I
4.43757 1.23820I 0
u = 1.51195 0.21374I
a = 0.104633 1.369450I
b = 0.342184 0.961816I
4.43757 + 1.23820I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.34952 + 0.73556I
a = 0.72074 + 1.63019I
b = 0.695108 + 1.158380I
4.5173 + 16.3689I 0
u = 1.34952 0.73556I
a = 0.72074 1.63019I
b = 0.695108 1.158380I
4.5173 16.3689I 0
u = 1.13836 + 1.03918I
a = 0.99274 1.43051I
b = 0.496265 1.089620I
1.16169 7.37354I 0
u = 1.13836 1.03918I
a = 0.99274 + 1.43051I
b = 0.496265 + 1.089620I
1.16169 + 7.37354I 0
u = 0.247407 + 0.342006I
a = 1.23861 0.86436I
b = 0.851416 0.882734I
8.18428 + 3.39136I 6.60752 + 1.70089I
u = 0.247407 0.342006I
a = 1.23861 + 0.86436I
b = 0.851416 + 0.882734I
8.18428 3.39136I 6.60752 1.70089I
11
II.
I
u
2
= hu
13
+ u
12
+ · · · + b + 4, u
13
+ 2u
12
+ · · · + a 5u, u
14
+ 2u
13
+ · · · + u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
2
=
u
13
2u
12
+ ··· + 5u
2
+ 5u
u
13
u
12
+ ··· + u 4
a
11
=
u
u
3
+ u
a
1
=
u
12
2u
11
+ ··· + 4u + 4
u
13
u
12
+ ··· + u 4
a
3
=
u
13
+ u
12
+ ··· + 5u + 4
4u
13
4u
12
+ ··· + 51u
2
10
a
5
=
2u
13
+ 4u
12
+ ··· 8u
2
+ 3
4u
13
+ 7u
12
+ ··· 6u + 4
a
8
=
2u
13
+ 3u
12
+ ··· 4u + 2
u
12
u
11
+ ··· + 5u 1
a
4
=
u
11
+ 2u
10
+ ··· + 6u + 1
3u
13
3u
12
+ ··· u 8
a
9
=
u
12
+ 2u
11
+ ··· 6u 5
u
13
+ u
12
+ ··· 20u
2
+ 5
a
9
=
u
12
+ 2u
11
+ ··· 6u 5
u
13
+ u
12
+ ··· 20u
2
+ 5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
13
9u
12
+ 20u
11
+ 56u
10
28u
9
137u
8
11u
7
+ 169u
6
+
61u
5
113u
4
60u
3
+ 42u
2
+ 22u 10
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
u
13
+ ··· + 4u
2
+ 1
c
2
u
14
+ 7u
13
+ ··· + 8u + 1
c
3
u
14
+ 2u
11
2u
10
u
9
u
8
2u
7
+ 4u
6
+ 2u
5
2u
3
u + 1
c
4
u
14
u
13
+ ··· + 4u
2
+ 1
c
5
u
14
+ u
13
+ ··· + 4u
2
+ 1
c
6
u
14
+ 2u
13
+ ··· + u + 1
c
7
, c
8
u
14
+ u
13
+ ··· + 4u
2
+ 1
c
9
u
14
+ u
13
+ 2u
11
2u
9
+ 4u
8
+ 2u
7
u
6
+ u
5
2u
4
2u
3
+ 1
c
10
u
14
2u
13
+ ··· u + 1
c
11
u
14
4u
12
+ ··· 6u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
14
+ 7y
13
+ ··· + 8y + 1
c
2
y
14
+ 7y
13
+ ··· + 4y + 1
c
3
y
14
4y
12
+ ··· y + 1
c
4
, c
7
, c
8
y
14
+ 15y
13
+ ··· + 8y + 1
c
6
, c
10
y
14
14y
13
+ ··· 13y + 1
c
9
y
14
y
13
+ ··· 4y
2
+ 1
c
11
y
14
8y
13
+ ··· 6y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.893293 + 0.330555I
a = 1.15727 1.80484I
b = 0.592535 1.077080I
1.31269 4.25298I 1.95653 + 2.08128I
u = 0.893293 0.330555I
a = 1.15727 + 1.80484I
b = 0.592535 + 1.077080I
1.31269 + 4.25298I 1.95653 2.08128I
u = 0.647670 + 0.662108I
a = 0.510220 1.279880I
b = 0.233748 + 0.627547I
4.41438 + 3.29645I 4.47890 2.20670I
u = 0.647670 0.662108I
a = 0.510220 + 1.279880I
b = 0.233748 0.627547I
4.41438 3.29645I 4.47890 + 2.20670I
u = 1.004110 + 0.573368I
a = 0.83903 2.27992I
b = 0.459822 1.169450I
2.10465 + 6.34173I 0.34884 6.28453I
u = 1.004110 0.573368I
a = 0.83903 + 2.27992I
b = 0.459822 + 1.169450I
2.10465 6.34173I 0.34884 + 6.28453I
u = 0.630522 + 0.153615I
a = 0.851195 1.013010I
b = 0.557304 + 0.531416I
0.482214 + 0.495105I 1.13492 1.08750I
u = 0.630522 0.153615I
a = 0.851195 + 1.013010I
b = 0.557304 0.531416I
0.482214 0.495105I 1.13492 + 1.08750I
u = 0.599098 + 0.137170I
a = 0.253842 0.494489I
b = 1.007620 0.852501I
7.61522 + 3.62847I 8.05550 2.25038I
u = 0.599098 0.137170I
a = 0.253842 + 0.494489I
b = 1.007620 + 0.852501I
7.61522 3.62847I 8.05550 + 2.25038I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.43294 + 0.11177I
a = 0.13928 + 1.45428I
b = 0.336823 + 0.911322I
3.87634 + 1.39907I 1.20170 5.22268I
u = 1.43294 0.11177I
a = 0.13928 1.45428I
b = 0.336823 0.911322I
3.87634 1.39907I 1.20170 + 5.22268I
u = 1.70588 + 0.11918I
a = 0.591819 + 1.217770I
b = 0.285468 + 0.936375I
1.20276 1.17534I 6.65232 + 0.40861I
u = 1.70588 0.11918I
a = 0.591819 1.217770I
b = 0.285468 0.936375I
1.20276 + 1.17534I 6.65232 0.40861I
16
III.
I
u
3
= h−u
5
+ 2u
4
+ u
3
2u
2
+ b u, u
5
+ 2u
4
+ a u, u
10
4u
9
+ · · · u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
2
=
u
5
2u
4
+ u
u
5
2u
4
u
3
+ 2u
2
+ u
a
11
=
u
u
3
+ u
a
1
=
u
3
2u
2
u
5
2u
4
u
3
+ 2u
2
+ u
a
3
=
u
8
4u
7
+ 3u
6
+ 5u
5
5u
4
3u
3
+ 2u
2
+ u
u
5
2u
4
u
3
+ 2u
2
+ u 1
a
5
=
u
8
4u
7
+ 3u
6
+ 5u
5
5u
4
3u
3
+ 2u
2
+ u
u
5
2u
4
u
3
+ 2u
2
+ u 1
a
8
=
u
u
3
u
a
4
=
u
9
+ 4u
8
4u
7
2u
6
+ 5u
5
2u
4
2u
3
+ 2u
2
+ u
u
9
+ 2u
8
+ 3u
7
6u
6
3u
5
+ 4u
4
+ 2u
3
+ u
a
9
=
u
2
2u + 1
u
4
2u
3
+ 2u
a
9
=
u
2
2u + 1
u
4
2u
3
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
+ 8u
4
+ 4u
3
8u
2
4u + 2
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
2
u + 1)
5
c
2
(u
2
+ u + 1)
5
c
3
, c
4
, c
7
c
8
u
10
+ 2u
8
u
6
u
5
2u
4
u
3
+ u
2
+ u + 1
c
6
, c
10
u
10
4u
9
+ 2u
8
+ 8u
7
5u
6
9u
5
+ 4u
4
+ 5u
3
u
2
u + 1
c
9
u
10
2u
8
4u
7
+ u
6
+ 5u
5
+ 16u
4
+ 11u
3
+ 7u
2
+ 3u + 1
c
11
u
10
+ 4u
9
+ 2u
8
8u
7
5u
6
+ 9u
5
+ 4u
4
5u
3
u
2
+ u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y
2
+ y + 1)
5
c
3
, c
4
, c
7
c
8
y
10
+ 4y
9
+ 2y
8
8y
7
5y
6
+ 9y
5
+ 4y
4
5y
3
y
2
+ y + 1
c
6
, c
10
, c
11
y
10
12y
9
+ ··· 3y + 1
c
9
y
10
4y
9
+ 6y
8
+ 12y
7
9y
6
+ 69y
5
+ 180y
4
+ 75y
3
+ 15y
2
+ 5y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.904891 + 0.285000I
a = 1.49566 + 2.57455I
b = 0.500000 + 0.866025I
2.02988I 0. 3.46410I
u = 0.904891 0.285000I
a = 1.49566 2.57455I
b = 0.500000 0.866025I
2.02988I 0. + 3.46410I
u = 0.628015 + 0.487800I
a = 0.387710 + 0.820455I
b = 0.500000 0.866025I
2.02988I 0. + 3.46410I
u = 0.628015 0.487800I
a = 0.387710 0.820455I
b = 0.500000 + 0.866025I
2.02988I 0. 3.46410I
u = 1.313160 + 0.316773I
a = 0.878996 0.922989I
b = 0.500000 0.866025I
2.02988I 0. + 3.46410I
u = 1.313160 0.316773I
a = 0.878996 + 0.922989I
b = 0.500000 + 0.866025I
2.02988I 0. 3.46410I
u = 0.338512 + 0.395352I
a = 0.463484 + 0.404816I
b = 0.500000 + 0.866025I
2.02988I 0. 3.46410I
u = 0.338512 0.395352I
a = 0.463484 0.404816I
b = 0.500000 0.866025I
2.02988I 0. + 3.46410I
u = 1.88124 + 0.12422I
a = 0.023461 + 1.248230I
b = 0.500000 + 0.866025I
2.02988I 0. 3.46410I
u = 1.88124 0.12422I
a = 0.023461 1.248230I
b = 0.500000 0.866025I
2.02988I 0. + 3.46410I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
5
)(u
14
u
13
+ ··· + 4u
2
+ 1)(u
66
+ 5u
65
+ ··· + 70u + 28)
c
2
((u
2
+ u + 1)
5
)(u
14
+ 7u
13
+ ··· + 8u + 1)
· (u
66
+ 27u
65
+ ··· + 5684u + 784)
c
3
(u
10
+ 2u
8
u
6
u
5
2u
4
u
3
+ u
2
+ u + 1)
· (u
14
+ 2u
11
2u
10
u
9
u
8
2u
7
+ 4u
6
+ 2u
5
2u
3
u + 1)
· (u
66
+ 7u
65
+ ··· 293u + 131)
c
4
(u
10
+ 2u
8
+ ··· + u + 1)(u
14
u
13
+ ··· + 4u
2
+ 1)
· (u
66
2u
65
+ ··· 20u + 1)
c
5
((u
2
u + 1)
5
)(u
14
+ u
13
+ ··· + 4u
2
+ 1)(u
66
+ 5u
65
+ ··· + 70u + 28)
c
6
(u
10
4u
9
+ 2u
8
+ 8u
7
5u
6
9u
5
+ 4u
4
+ 5u
3
u
2
u + 1)
· (u
14
+ 2u
13
+ ··· + u + 1)(u
66
+ 3u
65
+ ··· 49u + 23)
c
7
, c
8
(u
10
+ 2u
8
+ ··· + u + 1)(u
14
+ u
13
+ ··· + 4u
2
+ 1)
· (u
66
2u
65
+ ··· 20u + 1)
c
9
(u
10
2u
8
4u
7
+ u
6
+ 5u
5
+ 16u
4
+ 11u
3
+ 7u
2
+ 3u + 1)
· (u
14
+ u
13
+ 2u
11
2u
9
+ 4u
8
+ 2u
7
u
6
+ u
5
2u
4
2u
3
+ 1)
· (u
66
+ 2u
64
+ ··· + 24u + 1)
c
10
(u
10
4u
9
+ 2u
8
+ 8u
7
5u
6
9u
5
+ 4u
4
+ 5u
3
u
2
u + 1)
· (u
14
2u
13
+ ··· u + 1)(u
66
+ 3u
65
+ ··· 49u + 23)
c
11
(u
10
+ 4u
9
+ 2u
8
8u
7
5u
6
+ 9u
5
+ 4u
4
5u
3
u
2
+ u + 1)
· (u
14
4u
12
+ ··· 6u + 1)(u
66
+ 5u
65
+ ··· + 3276u + 667)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y
2
+ y + 1)
5
)(y
14
+ 7y
13
+ ··· + 8y + 1)
· (y
66
+ 27y
65
+ ··· + 5684y + 784)
c
2
((y
2
+ y + 1)
5
)(y
14
+ 7y
13
+ ··· + 4y + 1)
· (y
66
+ 27y
65
+ ··· + 5306896y + 614656)
c
3
(y
10
+ 4y
9
+ 2y
8
8y
7
5y
6
+ 9y
5
+ 4y
4
5y
3
y
2
+ y + 1)
· (y
14
4y
12
+ ··· y + 1)(y
66
15y
65
+ ··· 380599y + 17161)
c
4
, c
7
, c
8
(y
10
+ 4y
9
+ 2y
8
8y
7
5y
6
+ 9y
5
+ 4y
4
5y
3
y
2
+ y + 1)
· (y
14
+ 15y
13
+ ··· + 8y + 1)(y
66
+ 72y
65
+ ··· 2y + 1)
c
6
, c
10
(y
10
12y
9
+ ··· 3y + 1)(y
14
14y
13
+ ··· 13y + 1)
· (y
66
33y
65
+ ··· 12015y + 529)
c
9
(y
10
4y
9
+ 6y
8
+ 12y
7
9y
6
+ 69y
5
+ 180y
4
+ 75y
3
+ 15y
2
+ 5y + 1)
· (y
14
y
13
+ ··· 4y
2
+ 1)(y
66
+ 4y
65
+ ··· 30y + 1)
c
11
(y
10
12y
9
+ ··· 3y + 1)(y
14
8y
13
+ ··· 6y + 1)
· (y
66
15y
65
+ ··· 11892756y + 444889)
22