11a
172
(K11a
172
)
A knot diagram
1
Linearized knot diagam
6 1 9 8 2 10 5 11 3 7 4
Solving Sequence
2,5 6,10
7 8 1 3 4 9 11
c
5
c
6
c
7
c
1
c
2
c
4
c
9
c
11
c
3
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.51962 × 10
120
u
80
+ 2.58128 × 10
120
u
79
+ ··· + 2.77111 × 10
119
b + 2.51695 × 10
121
,
1.23775 × 10
121
u
80
+ 2.60882 × 10
121
u
79
+ ··· + 3.04822 × 10
120
a + 3.89021 × 10
122
,
u
81
u
80
+ ··· + 146u + 11i
I
u
2
= hu
10
+ 2u
9
+ 5u
8
+ 6u
7
+ 10u
6
+ 9u
5
+ 12u
4
+ 5u
3
+ 8u
2
+ b + u + 3,
3u
10
+ 5u
9
+ 12u
8
+ 12u
7
+ 21u
6
+ 15u
5
+ 24u
4
+ 5u
3
+ 16u
2
+ a + u + 6,
u
12
+ 2u
11
+ 5u
10
+ 6u
9
+ 10u
8
+ 9u
7
+ 13u
6
+ 7u
5
+ 10u
4
+ 3u
3
+ 5u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 93 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.52 × 10
120
u
80
+ 2.58 × 10
120
u
79
+ · · · + 2.77 × 10
119
b + 2.52 ×
10
121
, 1.24 × 10
121
u
80
+ 2.61 × 10
121
u
79
+ · · · + 3.05 × 10
120
a + 3.89 ×
10
122
, u
81
u
80
+ · · · + 146u + 11i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
10
=
4.06056u
80
8.55851u
79
+ ··· 1752.97u 127.622
9.09247u
80
9.31497u
79
+ ··· 1152.42u 90.8282
a
7
=
1.90149u
80
3.63407u
79
+ ··· 542.258u 30.5284
3.50405u
80
+ 5.85044u
79
+ ··· + 895.848u + 67.8095
a
8
=
1.60256u
80
9.48451u
79
+ ··· 1438.11u 98.3380
3.50405u
80
+ 5.85044u
79
+ ··· + 895.848u + 67.8095
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
4
=
0.693951u
80
4.44401u
79
+ ··· 730.986u 54.7342
6.50203u
80
8.97698u
79
+ ··· 1397.70u 105.903
a
9
=
10.4549u
80
0.552077u
79
+ ··· 685.338u 46.3310
7.65677u
80
5.80747u
79
+ ··· 574.080u 48.8420
a
11
=
7.55435u
80
+ 8.32431u
79
+ ··· + 1688.10u + 113.742
2.60153u
80
+ 0.937228u
79
+ ··· 22.1822u + 0.491286
a
11
=
7.55435u
80
+ 8.32431u
79
+ ··· + 1688.10u + 113.742
2.60153u
80
+ 0.937228u
79
+ ··· 22.1822u + 0.491286
(ii) Obstruction class = 1
(iii) Cusp Shapes = 29.9952u
80
20.3906u
79
+ ··· 1409.95u 140.975
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
81
u
80
+ ··· + 146u + 11
c
2
u
81
+ 37u
80
+ ··· + 24110u 121
c
3
, c
9
u
81
u
80
+ ··· + 4136u + 361
c
4
, c
7
u
81
4u
80
+ ··· 337u + 79
c
6
, c
10
u
81
+ u
80
+ ··· + 204u + 53
c
8
u
81
3u
80
+ ··· 19u + 1
c
11
u
81
6u
80
+ ··· + 13u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
81
+ 37y
80
+ ··· + 24110y 121
c
2
y
81
+ 21y
80
+ ··· + 659237638y 14641
c
3
, c
9
y
81
+ 51y
80
+ ··· 2871244y 130321
c
4
, c
7
y
81
+ 46y
80
+ ··· 118533y 6241
c
6
, c
10
y
81
53y
80
+ ··· 83040y 2809
c
8
y
81
11y
80
+ ··· + 39y 1
c
11
y
81
+ 8y
80
+ ··· 25y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.277742 + 0.957304I
a = 0.589284 0.040204I
b = 1.029450 + 0.799534I
1.28833 3.68796I 0
u = 0.277742 0.957304I
a = 0.589284 + 0.040204I
b = 1.029450 0.799534I
1.28833 + 3.68796I 0
u = 0.890636 + 0.426487I
a = 0.936841 0.482062I
b = 1.16295 + 1.37688I
1.65327 2.04363I 0
u = 0.890636 0.426487I
a = 0.936841 + 0.482062I
b = 1.16295 1.37688I
1.65327 + 2.04363I 0
u = 0.914505 + 0.442850I
a = 0.722643 0.237503I
b = 0.985252 + 0.169801I
2.79428 + 2.46741I 0
u = 0.914505 0.442850I
a = 0.722643 + 0.237503I
b = 0.985252 0.169801I
2.79428 2.46741I 0
u = 0.373294 + 0.899163I
a = 2.23145 1.34143I
b = 0.306209 + 0.777908I
6.67065 + 1.54680I 0
u = 0.373294 0.899163I
a = 2.23145 + 1.34143I
b = 0.306209 0.777908I
6.67065 1.54680I 0
u = 0.765703 + 0.590162I
a = 0.213361 0.436707I
b = 0.788040 + 0.178633I
3.41372 + 1.66088I 0
u = 0.765703 0.590162I
a = 0.213361 + 0.436707I
b = 0.788040 0.178633I
3.41372 1.66088I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.184870 + 0.945828I
a = 2.49698 + 1.69418I
b = 1.90605 + 0.40352I
1.21757 + 4.42471I 0
u = 0.184870 0.945828I
a = 2.49698 1.69418I
b = 1.90605 0.40352I
1.21757 4.42471I 0
u = 0.436642 + 0.944106I
a = 3.10641 + 1.33262I
b = 2.13162 1.48569I
2.27868 + 2.43296I 0
u = 0.436642 0.944106I
a = 3.10641 1.33262I
b = 2.13162 + 1.48569I
2.27868 2.43296I 0
u = 0.870540 + 0.396771I
a = 0.117573 0.343970I
b = 1.50328 0.19115I
4.70614 + 5.21682I 0
u = 0.870540 0.396771I
a = 0.117573 + 0.343970I
b = 1.50328 + 0.19115I
4.70614 5.21682I 0
u = 0.733303 + 0.744518I
a = 0.604651 + 0.227996I
b = 0.103799 + 0.288765I
5.79269 0.02102I 0
u = 0.733303 0.744518I
a = 0.604651 0.227996I
b = 0.103799 0.288765I
5.79269 + 0.02102I 0
u = 0.295228 + 0.905302I
a = 1.88964 1.34066I
b = 0.975564 0.380586I
2.95455 1.54554I 0
u = 0.295228 0.905302I
a = 1.88964 + 1.34066I
b = 0.975564 + 0.380586I
2.95455 + 1.54554I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.017650 + 0.379794I
a = 0.349039 0.014629I
b = 1.58864 0.88981I
0.44931 11.14580I 0
u = 1.017650 0.379794I
a = 0.349039 + 0.014629I
b = 1.58864 + 0.88981I
0.44931 + 11.14580I 0
u = 0.748260 + 0.498352I
a = 0.680709 0.033153I
b = 1.36977 1.10869I
3.41784 + 5.58312I 0
u = 0.748260 0.498352I
a = 0.680709 + 0.033153I
b = 1.36977 + 1.10869I
3.41784 5.58312I 0
u = 0.530048 + 0.969062I
a = 1.02205 + 2.36180I
b = 2.14085 + 0.68040I
1.64510 + 2.76495I 0
u = 0.530048 0.969062I
a = 1.02205 2.36180I
b = 2.14085 0.68040I
1.64510 2.76495I 0
u = 0.379563 + 1.038440I
a = 0.019259 0.353203I
b = 0.290543 + 0.509795I
3.68236 0.74433I 0
u = 0.379563 1.038440I
a = 0.019259 + 0.353203I
b = 0.290543 0.509795I
3.68236 + 0.74433I 0
u = 0.322947 + 1.065460I
a = 2.38819 0.46170I
b = 1.74404 + 0.51029I
1.71311 + 5.50527I 0
u = 0.322947 1.065460I
a = 2.38819 + 0.46170I
b = 1.74404 0.51029I
1.71311 5.50527I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.352895 + 0.810796I
a = 0.78882 1.17717I
b = 1.12723 1.41186I
1.67949 + 0.94183I 10.8843 9.4947I
u = 0.352895 0.810796I
a = 0.78882 + 1.17717I
b = 1.12723 + 1.41186I
1.67949 0.94183I 10.8843 + 9.4947I
u = 0.315113 + 0.821727I
a = 0.580652 0.468579I
b = 0.573469 + 0.266582I
0.37334 + 1.83225I 0. 4.52862I
u = 0.315113 0.821727I
a = 0.580652 + 0.468579I
b = 0.573469 0.266582I
0.37334 1.83225I 0. + 4.52862I
u = 0.867577 + 0.043338I
a = 0.623268 + 0.116087I
b = 1.33037 + 0.49936I
2.42247 2.01861I 2.49708 + 3.52513I
u = 0.867577 0.043338I
a = 0.623268 0.116087I
b = 1.33037 0.49936I
2.42247 + 2.01861I 2.49708 3.52513I
u = 0.700242 + 0.513598I
a = 1.287970 + 0.404066I
b = 0.339088 + 0.160724I
2.60224 4.83341I 0. + 3.02749I
u = 0.700242 0.513598I
a = 1.287970 0.404066I
b = 0.339088 0.160724I
2.60224 + 4.83341I 0. 3.02749I
u = 0.287693 + 1.113100I
a = 1.44963 1.16713I
b = 0.878686 + 0.093124I
6.15519 0.01094I 0
u = 0.287693 1.113100I
a = 1.44963 + 1.16713I
b = 0.878686 0.093124I
6.15519 + 0.01094I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.545811 + 0.650639I
a = 0.810306 0.552974I
b = 1.239930 + 0.559096I
0.69728 + 1.59725I 10.3641 10.4305I
u = 0.545811 0.650639I
a = 0.810306 + 0.552974I
b = 1.239930 0.559096I
0.69728 1.59725I 10.3641 + 10.4305I
u = 0.709748 + 0.918112I
a = 0.640953 + 0.301489I
b = 0.0237234 + 0.0154603I
5.29026 5.43982I 0
u = 0.709748 0.918112I
a = 0.640953 0.301489I
b = 0.0237234 0.0154603I
5.29026 + 5.43982I 0
u = 0.445781 + 1.086450I
a = 1.27655 0.90303I
b = 1.324370 + 0.444155I
0.88677 + 1.99270I 0
u = 0.445781 1.086450I
a = 1.27655 + 0.90303I
b = 1.324370 0.444155I
0.88677 1.99270I 0
u = 0.454876 + 1.092700I
a = 0.717543 0.490926I
b = 1.115050 0.463229I
3.07340 6.23280I 0
u = 0.454876 1.092700I
a = 0.717543 + 0.490926I
b = 1.115050 + 0.463229I
3.07340 + 6.23280I 0
u = 0.609653 + 1.021970I
a = 1.14449 1.23571I
b = 0.857463 + 0.052267I
4.73465 + 3.54232I 0
u = 0.609653 1.021970I
a = 1.14449 + 1.23571I
b = 0.857463 0.052267I
4.73465 3.54232I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.587458 + 1.053080I
a = 0.647859 + 0.564476I
b = 0.028015 0.257190I
0.98595 + 9.80145I 0
u = 0.587458 1.053080I
a = 0.647859 0.564476I
b = 0.028015 + 0.257190I
0.98595 9.80145I 0
u = 0.606822 + 1.067120I
a = 2.09389 + 1.05317I
b = 1.68871 1.37259I
1.71523 10.74030I 0
u = 0.606822 1.067120I
a = 2.09389 1.05317I
b = 1.68871 + 1.37259I
1.71523 + 10.74030I 0
u = 0.700098 + 0.302563I
a = 0.378270 + 0.316282I
b = 1.098130 + 0.472865I
2.07326 + 2.81362I 5.52778 3.47013I
u = 0.700098 0.302563I
a = 0.378270 0.316282I
b = 1.098130 0.472865I
2.07326 2.81362I 5.52778 + 3.47013I
u = 0.679607 + 1.037910I
a = 0.184954 0.146990I
b = 0.109159 + 0.786626I
1.14303 + 3.39523I 0
u = 0.679607 1.037910I
a = 0.184954 + 0.146990I
b = 0.109159 0.786626I
1.14303 3.39523I 0
u = 0.545658 + 1.116690I
a = 1.83285 0.80458I
b = 1.44752 + 0.44923I
4.41169 7.58690I 0
u = 0.545658 1.116690I
a = 1.83285 + 0.80458I
b = 1.44752 0.44923I
4.41169 + 7.58690I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.133192 + 1.236390I
a = 1.97287 + 0.17268I
b = 1.61221 0.54295I
10.31880 + 2.36842I 0
u = 0.133192 1.236390I
a = 1.97287 0.17268I
b = 1.61221 + 0.54295I
10.31880 2.36842I 0
u = 0.448684 + 0.602812I
a = 0.707866 + 0.446014I
b = 0.221529 + 0.802517I
0.53065 + 1.48051I 2.48603 4.71879I
u = 0.448684 0.602812I
a = 0.707866 0.446014I
b = 0.221529 0.802517I
0.53065 1.48051I 2.48603 + 4.71879I
u = 0.655691 + 1.064710I
a = 1.71705 0.75459I
b = 0.94398 + 1.63599I
0.16943 3.63650I 0
u = 0.655691 1.064710I
a = 1.71705 + 0.75459I
b = 0.94398 1.63599I
0.16943 + 3.63650I 0
u = 0.626224 + 1.142340I
a = 1.40624 + 1.27677I
b = 1.84394 0.37994I
6.95506 10.74710I 0
u = 0.626224 1.142340I
a = 1.40624 1.27677I
b = 1.84394 + 0.37994I
6.95506 + 10.74710I 0
u = 0.443555 + 1.244120I
a = 1.25833 0.92533I
b = 2.09548 0.12003I
3.28489 6.00210I 0
u = 0.443555 1.244120I
a = 1.25833 + 0.92533I
b = 2.09548 + 0.12003I
3.28489 + 6.00210I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.594249 + 0.222454I
a = 0.271831 + 1.018050I
b = 0.454127 + 0.242461I
0.55853 + 2.10716I 1.76988 3.18079I
u = 0.594249 0.222454I
a = 0.271831 1.018050I
b = 0.454127 0.242461I
0.55853 2.10716I 1.76988 + 3.18079I
u = 0.665094 + 1.198700I
a = 1.75937 + 0.88579I
b = 1.75258 1.22406I
2.9847 + 17.2020I 0
u = 0.665094 1.198700I
a = 1.75937 0.88579I
b = 1.75258 + 1.22406I
2.9847 17.2020I 0
u = 0.08789 + 1.43570I
a = 1.56531 + 0.46985I
b = 2.07372 + 0.24874I
7.07099 7.27755I 0
u = 0.08789 1.43570I
a = 1.56531 0.46985I
b = 2.07372 0.24874I
7.07099 + 7.27755I 0
u = 0.62360 + 1.34216I
a = 1.64788 0.52162I
b = 2.05315 + 1.55643I
1.56924 + 7.62859I 0
u = 0.62360 1.34216I
a = 1.64788 + 0.52162I
b = 2.05315 1.55643I
1.56924 7.62859I 0
u = 1.17342 + 0.91582I
a = 0.459401 0.208843I
b = 0.657031 + 0.986184I
2.63251 4.04535I 0
u = 1.17342 0.91582I
a = 0.459401 + 0.208843I
b = 0.657031 0.986184I
2.63251 + 4.04535I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.0686437
a = 7.31889
b = 0.828764
1.42877 7.46790
13
II.
I
u
2
= hu
10
+ 2u
9
+ · · · + b + 3, 3u
10
+ 5u
9
+ · · · + a + 6, u
12
+ 2u
11
+ · · · + u + 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
10
=
3u
10
5u
9
+ ··· u 6
u
10
2u
9
5u
8
6u
7
10u
6
9u
5
12u
4
5u
3
8u
2
u 3
a
7
=
2u
11
3u
9
+ 3u
8
5u
7
+ 7u
6
6u
5
+ 16u
4
10u
3
+ 13u
2
4u + 5
u
11
u
10
3u
9
2u
8
6u
7
3u
6
8u
5
7u
3
+ u
2
3u + 1
a
8
=
u
11
+ u
10
+ 5u
8
+ u
7
+ 10u
6
+ 2u
5
+ 16u
4
3u
3
+ 12u
2
u + 4
u
11
u
10
3u
9
2u
8
6u
7
3u
6
8u
5
7u
3
+ u
2
3u + 1
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
4
=
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 3u
3
2u
2
+ 2u + 1
u
11
+ 2u
10
+ ··· + 4u + 1
a
9
=
u
11
u
10
u
9
7u
8
4u
7
13u
6
5u
5
18u
4
+ u
3
12u
2
+ u 5
u
11
+ u
10
+ 2u
9
+ u
7
3u
6
u
5
7u
4
u
3
5u
2
2
a
11
=
4u
11
5u
10
+ ··· 6u 2
2u
11
4u
10
+ ··· 4u 3
a
11
=
4u
11
5u
10
+ ··· 6u 2
2u
11
4u
10
+ ··· 4u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
11
+ 15u
10
+ 26u
9
+ 48u
8
+ 53u
7
+ 76u
6
+ 62u
5
+ 77u
4
+ 23u
3
+ 49u
2
+ u + 11
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
2u
11
+ ··· u + 1
c
2
u
12
+ 6u
11
+ ··· + 9u + 1
c
3
u
12
+ 2u
10
u
8
+ u
7
3u
6
+ u
5
u
4
u
3
+ 2u
2
u + 1
c
4
u
12
u
11
+ 2u
10
u
9
u
8
+ u
7
3u
6
+ u
5
u
4
+ 2u
2
+ 1
c
5
u
12
+ 2u
11
+ ··· + u + 1
c
6
u
12
+ 4u
11
+ ··· + 3u + 1
c
7
u
12
+ u
11
+ 2u
10
+ u
9
u
8
u
7
3u
6
u
5
u
4
+ 2u
2
+ 1
c
8
u
12
6u
11
+ ··· 8u + 1
c
9
u
12
+ 2u
10
u
8
u
7
3u
6
u
5
u
4
+ u
3
+ 2u
2
+ u + 1
c
10
u
12
4u
11
+ ··· 3u + 1
c
11
u
12
u
11
+ ··· 4u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
12
+ 6y
11
+ ··· + 9y + 1
c
2
y
12
+ 6y
11
+ ··· 3y + 1
c
3
, c
9
y
12
+ 4y
11
+ ··· + 3y + 1
c
4
, c
7
y
12
+ 3y
11
+ ··· + 4y + 1
c
6
, c
10
y
12
12y
11
+ ··· 9y + 1
c
8
y
12
6y
11
+ ··· 16y + 1
c
11
y
12
+ 5y
11
+ ··· + 8y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.247892 + 0.947447I
a = 2.06596 1.45279I
b = 0.447570 0.087825I
7.17019 1.02030I 13.27326 0.82815I
u = 0.247892 0.947447I
a = 2.06596 + 1.45279I
b = 0.447570 + 0.087825I
7.17019 + 1.02030I 13.27326 + 0.82815I
u = 0.486518 + 0.993982I
a = 1.81523 1.42628I
b = 1.65796 + 0.46014I
2.09528 + 2.86682I 5.47332 2.30549I
u = 0.486518 0.993982I
a = 1.81523 + 1.42628I
b = 1.65796 0.46014I
2.09528 2.86682I 5.47332 + 2.30549I
u = 0.480251 + 0.690480I
a = 0.080921 + 0.498148I
b = 1.123790 + 0.376666I
1.05844 + 1.11861I 7.61832 5.82501I
u = 0.480251 0.690480I
a = 0.080921 0.498148I
b = 1.123790 0.376666I
1.05844 1.11861I 7.61832 + 5.82501I
u = 0.452978 + 1.234890I
a = 1.84588 0.60605I
b = 2.20069 + 0.59926I
2.85303 7.20115I 5.87593 + 8.65754I
u = 0.452978 1.234890I
a = 1.84588 + 0.60605I
b = 2.20069 0.59926I
2.85303 + 7.20115I 5.87593 8.65754I
u = 1.088860 + 0.855698I
a = 0.699838 0.056656I
b = 0.78061 + 1.18919I
3.28943 3.84736I 5.88370 + 4.17023I
u = 1.088860 0.855698I
a = 0.699838 + 0.056656I
b = 0.78061 1.18919I
3.28943 + 3.84736I 5.88370 4.17023I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.177038 + 0.575634I
a = 2.21553 + 1.05447I
b = 1.33348 + 0.55498I
0.01791 + 4.36215I 0.35713 5.21266I
u = 0.177038 0.575634I
a = 2.21553 1.05447I
b = 1.33348 0.55498I
0.01791 4.36215I 0.35713 + 5.21266I
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
12
2u
11
+ ··· u + 1)(u
81
u
80
+ ··· + 146u + 11)
c
2
(u
12
+ 6u
11
+ ··· + 9u + 1)(u
81
+ 37u
80
+ ··· + 24110u 121)
c
3
(u
12
+ 2u
10
u
8
+ u
7
3u
6
+ u
5
u
4
u
3
+ 2u
2
u + 1)
· (u
81
u
80
+ ··· + 4136u + 361)
c
4
(u
12
u
11
+ 2u
10
u
9
u
8
+ u
7
3u
6
+ u
5
u
4
+ 2u
2
+ 1)
· (u
81
4u
80
+ ··· 337u + 79)
c
5
(u
12
+ 2u
11
+ ··· + u + 1)(u
81
u
80
+ ··· + 146u + 11)
c
6
(u
12
+ 4u
11
+ ··· + 3u + 1)(u
81
+ u
80
+ ··· + 204u + 53)
c
7
(u
12
+ u
11
+ 2u
10
+ u
9
u
8
u
7
3u
6
u
5
u
4
+ 2u
2
+ 1)
· (u
81
4u
80
+ ··· 337u + 79)
c
8
(u
12
6u
11
+ ··· 8u + 1)(u
81
3u
80
+ ··· 19u + 1)
c
9
(u
12
+ 2u
10
u
8
u
7
3u
6
u
5
u
4
+ u
3
+ 2u
2
+ u + 1)
· (u
81
u
80
+ ··· + 4136u + 361)
c
10
(u
12
4u
11
+ ··· 3u + 1)(u
81
+ u
80
+ ··· + 204u + 53)
c
11
(u
12
u
11
+ ··· 4u + 1)(u
81
6u
80
+ ··· + 13u 1)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
12
+ 6y
11
+ ··· + 9y + 1)(y
81
+ 37y
80
+ ··· + 24110y 121)
c
2
(y
12
+ 6y
11
+ ··· 3y + 1)(y
81
+ 21y
80
+ ··· + 6.59238 × 10
8
y 14641)
c
3
, c
9
(y
12
+ 4y
11
+ ··· + 3y + 1)(y
81
+ 51y
80
+ ··· 2871244y 130321)
c
4
, c
7
(y
12
+ 3y
11
+ ··· + 4y + 1)(y
81
+ 46y
80
+ ··· 118533y 6241)
c
6
, c
10
(y
12
12y
11
+ ··· 9y + 1)(y
81
53y
80
+ ··· 83040y 2809)
c
8
(y
12
6y
11
+ ··· 16y + 1)(y
81
11y
80
+ ··· + 39y 1)
c
11
(y
12
+ 5y
11
+ ··· + 8y + 1)(y
81
+ 8y
80
+ ··· 25y 1)
20