11a
173
(K11a
173
)
A knot diagram
1
Linearized knot diagam
5 1 9 6 2 10 4 11 7 3 8
Solving Sequence
1,5
2 3 6
4,8
7 11 9 10
c
1
c
2
c
5
c
4
c
7
c
11
c
8
c
10
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−14767307395u
27
+ 20235323073u
26
+ ··· + 98330713818b + 33355375098,
32428293291u
27
21218621420u
26
+ ··· + 196661427636a + 204360671755,
u
28
2u
27
+ ··· 3u 4i
I
u
2
= h−u
4
a u
3
a + 14u
4
2u
2
a 5u
3
4au 10u
2
+ 19b + 9a u + 26,
5u
4
a 2u
3
a + 16u
4
u
2
a 8u
3
+ a
2
au 5u
2
+ 9a 3u + 30, u
5
u
4
+ 2u 1i
I
u
3
= h19u
15
a + 23u
15
+ ··· + 20a + 27, 2u
15
a + 6u
15
+ ··· + a
2
4,
u
16
u
15
2u
14
+ 3u
13
+ 4u
12
7u
11
3u
10
+ 10u
9
9u
7
+ 3u
6
+ 5u
5
4u
4
+ 2u
2
2u + 1i
I
u
4
= hb 1, 2a 2u + 1, u
3
+ u
2
1i
I
u
5
= hb a 1, a
2
+ a + 2, u + 1i
I
u
6
= h2b a + 1, a
2
2a + 5, u 1i
* 6 irreducible components of dim
C
= 0, with total 77 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.48×10
10
u
27
+2.02×10
10
u
26
+· · ·+9.83×10
10
b+3.34×10
10
, 3.24×
10
10
u
27
2.12×10
10
u
26
+· · ·+1.97×10
11
a+2.04×10
11
, u
28
2u
27
+· · ·3u4i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
4
=
u
3
u
5
u
3
+ u
a
8
=
0.164894u
27
+ 0.107894u
26
+ ··· 2.21519u 1.03915
0.150180u
27
0.205788u
26
+ ··· + 0.595130u 0.339216
a
7
=
0.160609u
27
+ 0.110297u
26
+ ··· 2.13491u 1.03465
0.227707u
27
0.221295u
26
+ ··· + 0.789310u 0.0177292
a
11
=
0.206489u
27
0.182794u
26
+ ··· + 1.38239u + 1.44504
0.198851u
27
+ 0.240301u
26
+ ··· + 0.0000310478u + 0.278301
a
9
=
0.312509u
27
+ 0.216909u
26
+ ··· 2.81796u 1.93782
0.373802u
27
0.449982u
26
+ ··· + 0.400981u 0.382402
a
10
=
0.137090u
27
0.0589378u
26
+ ··· + 1.47329u + 1.50912
0.199975u
27
+ 0.238265u
26
+ ··· 0.339747u + 0.201391
a
10
=
0.137090u
27
0.0589378u
26
+ ··· + 1.47329u + 1.50912
0.199975u
27
+ 0.238265u
26
+ ··· 0.339747u + 0.201391
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
138939169865
196661427636
u
27
31573928977
196661427636
u
26
+ ···
326662110881
16388452303
u
420010681258
49165356909
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
28
+ 2u
27
+ ··· + 3u 4
c
2
, c
4
u
28
+ 10u
27
+ ··· + 97u + 16
c
3
u
28
+ 3u
27
+ ··· + 736u + 128
c
6
, c
8
, c
9
c
11
u
28
3u
27
+ ··· 5u 1
c
7
, c
10
8(8u
28
12u
27
+ ··· + 4u + 2)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
28
10y
27
+ ··· 97y + 16
c
2
, c
4
y
28
+ 18y
27
+ ··· + 8543y + 256
c
3
y
28
5y
27
+ ··· 238592y + 16384
c
6
, c
8
, c
9
c
11
y
28
+ 11y
27
+ ··· 51y + 1
c
7
, c
10
64(64y
28
+ 176y
27
+ ··· + 40y + 4)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.566116 + 0.813544I
a = 0.534639 0.137883I
b = 0.471357 + 0.915613I
1.74883 2.81556I 1.14300 + 4.42775I
u = 0.566116 0.813544I
a = 0.534639 + 0.137883I
b = 0.471357 0.915613I
1.74883 + 2.81556I 1.14300 4.42775I
u = 0.805429 + 0.748611I
a = 1.99187 + 0.34421I
b = 1.193820 + 0.462931I
4.99503 1.79073I 1.05075 2.61493I
u = 0.805429 0.748611I
a = 1.99187 0.34421I
b = 1.193820 0.462931I
4.99503 + 1.79073I 1.05075 + 2.61493I
u = 0.679059 + 0.893968I
a = 0.932511 0.786849I
b = 0.600465 + 1.265070I
0.89815 + 10.64770I 3.82752 5.52190I
u = 0.679059 0.893968I
a = 0.932511 + 0.786849I
b = 0.600465 1.265070I
0.89815 10.64770I 3.82752 + 5.52190I
u = 0.167815 + 0.852338I
a = 0.800362 + 0.593310I
b = 0.442426 1.154500I
3.88792 6.82425I 4.62158 + 6.71855I
u = 0.167815 0.852338I
a = 0.800362 0.593310I
b = 0.442426 + 1.154500I
3.88792 + 6.82425I 4.62158 6.71855I
u = 0.838400
a = 0.287249
b = 1.20069
0.271501 23.7360
u = 1.156720 + 0.209637I
a = 0.79174 + 1.21845I
b = 0.465804 + 1.280600I
8.43358 + 10.19260I 10.18832 7.63922I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.156720 0.209637I
a = 0.79174 1.21845I
b = 0.465804 1.280600I
8.43358 10.19260I 10.18832 + 7.63922I
u = 0.928400 + 0.721425I
a = 1.19972 + 1.35918I
b = 1.278550 0.388894I
4.61539 3.79849I 3.70384 + 8.50950I
u = 0.928400 0.721425I
a = 1.19972 1.35918I
b = 1.278550 + 0.388894I
4.61539 + 3.79849I 3.70384 8.50950I
u = 0.878060 + 0.825409I
a = 0.366900 + 0.450231I
b = 0.338313 0.571686I
3.34352 + 1.62496I 2.45048 + 1.41829I
u = 0.878060 0.825409I
a = 0.366900 0.450231I
b = 0.338313 + 0.571686I
3.34352 1.62496I 2.45048 1.41829I
u = 1.214650 + 0.097151I
a = 0.222900 0.987308I
b = 0.155309 0.849372I
4.05629 + 0.93128I 2.23485 6.88947I
u = 1.214650 0.097151I
a = 0.222900 + 0.987308I
b = 0.155309 + 0.849372I
4.05629 0.93128I 2.23485 + 6.88947I
u = 0.903785 + 0.845201I
a = 1.078650 0.117582I
b = 0.379054 + 0.705257I
3.28350 + 4.57627I 2.13594 7.47854I
u = 0.903785 0.845201I
a = 1.078650 + 0.117582I
b = 0.379054 0.705257I
3.28350 4.57627I 2.13594 + 7.47854I
u = 1.168360 + 0.434244I
a = 0.627774 + 0.344147I
b = 0.309881 + 1.145950I
7.10420 + 2.17526I 9.93897 4.23335I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.168360 0.434244I
a = 0.627774 0.344147I
b = 0.309881 1.145950I
7.10420 2.17526I 9.93897 + 4.23335I
u = 1.074080 + 0.691225I
a = 1.41798 0.69280I
b = 0.422318 1.038380I
0.23866 + 8.48658I 4.72348 9.14479I
u = 1.074080 0.691225I
a = 1.41798 + 0.69280I
b = 0.422318 + 1.038380I
0.23866 8.48658I 4.72348 + 9.14479I
u = 1.050060 + 0.753206I
a = 2.17570 0.35594I
b = 0.60850 1.30717I
2.0462 16.7456I 5.37386 + 9.80445I
u = 1.050060 0.753206I
a = 2.17570 + 0.35594I
b = 0.60850 + 1.30717I
2.0462 + 16.7456I 5.37386 9.80445I
u = 0.682847
a = 0.725706
b = 0.129567
0.926639 11.5880
u = 0.357231 + 0.322552I
a = 0.478268 0.914294I
b = 0.587531 0.365743I
1.12674 + 1.01957I 4.42993 4.67672I
u = 0.357231 0.322552I
a = 0.478268 + 0.914294I
b = 0.587531 + 0.365743I
1.12674 1.01957I 4.42993 + 4.67672I
7
II.
I
u
2
= h−u
4
a+14u
4
+· · ·+9a+26, 5u
4
a+16u
4
+· · ·+9a+30, u
5
u
4
+2u1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
4
=
u
3
u
4
u
3
u + 1
a
8
=
a
0.0526316au
4
0.736842u
4
+ ··· 0.473684a 1.36842
a
7
=
0.368421au
4
0.157895u
4
+ ··· + 0.684211a + 0.421053
u
4
au + u
2
+ u 2
a
11
=
0.736842au
4
+ 5.68421u
4
+ ··· + 1.36842a + 10.8421
0.210526au
4
0.947368u
4
+ ··· + 0.105263a 1.47368
a
9
=
u
4
u
3
u
2
u + 2
u
4
+ u
2
+ u 1
a
10
=
0.473684au
4
+ 4.36842u
4
+ ··· + 0.736842a + 7.68421
0.105263au
4
1.52632u
4
+ ··· 0.0526316a 2.26316
a
10
=
0.473684au
4
+ 4.36842u
4
+ ··· + 0.736842a + 7.68421
0.105263au
4
1.52632u
4
+ ··· 0.0526316a 2.26316
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
3
+ 4u
2
10
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
5
+ u
4
+ 2u + 1)
2
c
2
, c
4
(u
5
+ u
4
+ 4u
3
+ 2u
2
+ 4u + 1)
2
c
3
(u
5
u
4
+ 2u 1)
2
c
6
, c
8
, c
9
c
11
u
10
+ u
9
+ 2u
8
+ 4u
7
+ 4u
6
+ 5u
5
+ 3u
4
+ u
3
+ u
2
+ 1
c
7
, c
10
u
10
+ 4u
9
+ 8u
8
+ 6u
7
+ 6u
6
+ 7u
5
+ 25u
4
+ 43u
3
+ 56u
2
+ 36u + 8
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
(y
5
y
4
+ 4y
3
2y
2
+ 4y 1)
2
c
2
, c
4
(y
5
+ 7y
4
+ 20y
3
+ 26y
2
+ 12y 1)
2
c
6
, c
8
, c
9
c
11
y
10
+ 3y
9
+ 4y
8
4y
7
12y
6
3y
5
+ 11y
4
+ 13y
3
+ 7y
2
+ 2y + 1
c
7
, c
10
y
10
+ 28y
8
+ ··· 400y + 64
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.760506 + 0.815892I
a = 0.686158 + 0.302307I
b = 0.386464 0.809421I
3.01208 + 1.13825I 0.09602 2.34058I
u = 0.760506 + 0.815892I
a = 0.658201 0.065826I
b = 0.473774 0.431559I
3.01208 + 1.13825I 0.09602 2.34058I
u = 0.760506 0.815892I
a = 0.686158 0.302307I
b = 0.386464 + 0.809421I
3.01208 1.13825I 0.09602 + 2.34058I
u = 0.760506 0.815892I
a = 0.658201 + 0.065826I
b = 0.473774 + 0.431559I
3.01208 1.13825I 0.09602 + 2.34058I
u = 1.001870 + 0.741764I
a = 1.06668 1.09068I
b = 1.129990 + 0.183434I
1.49357 10.61130I 2.76481 + 7.85454I
u = 1.001870 + 0.741764I
a = 2.24279 + 0.22903I
b = 0.67647 + 1.30286I
1.49357 10.61130I 2.76481 + 7.85454I
u = 1.001870 0.741764I
a = 1.06668 + 1.09068I
b = 1.129990 0.183434I
1.49357 + 10.61130I 2.76481 7.85454I
u = 1.001870 0.741764I
a = 2.24279 0.22903I
b = 0.67647 1.30286I
1.49357 + 10.61130I 2.76481 7.85454I
u = 0.517281
a = 4.14815 + 3.15299I
b = 0.133790 1.026500I
4.07650 8.66240
u = 0.517281
a = 4.14815 3.15299I
b = 0.133790 + 1.026500I
4.07650 8.66240
11
III. I
u
3
=
h19u
15
a+23u
15
+· · ·+20a+27, 2u
15
a+6u
15
+· · ·+a
2
4, u
16
u
15
+· · ·2u+1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
4
=
u
3
u
5
u
3
+ u
a
8
=
a
0.358491au
15
0.433962u
15
+ ··· 0.377358a 0.509434
a
7
=
0.943396au
15
+ 0.773585u
15
+ ··· + 0.150943a 1.39623
0.811321au
15
1.24528u
15
+ ··· 0.169811a + 0.320755
a
11
=
0.433962au
15
+ 2.73585u
15
+ ··· + 0.509434a + 1.03774
0.339623au
15
0.358491u
15
+ ··· 0.0943396a 1.37736
a
9
=
2u
14
+ u
13
+ ··· u + 2
u
15
2u
14
+ ··· + 2u 2
a
10
=
0.377358au
15
+ 1.49057u
15
+ ··· + 1.33962a + 0.358491
0.509434au
15
0.962264u
15
+ ··· 0.358491a 0.433962
a
10
=
0.377358au
15
+ 1.49057u
15
+ ··· + 1.33962a + 0.358491
0.509434au
15
0.962264u
15
+ ··· 0.358491a 0.433962
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
12
8u
10
+ 16u
8
4u
7
16u
6
+ 8u
5
+ 12u
4
8u
3
4u
2
+ 4u 6
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
16
+ u
15
+ ··· + 2u + 1)
2
c
2
, c
4
(u
16
+ 5u
15
+ ··· 4u
2
+ 1)
2
c
3
(u
16
u
15
+ ··· 2u + 1)
2
c
6
, c
8
, c
9
c
11
u
32
+ 5u
31
+ ··· + 8u + 1
c
7
, c
10
u
32
+ u
31
+ ··· 402u + 73
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
(y
16
5y
15
+ ··· 4y
2
+ 1)
2
c
2
, c
4
(y
16
+ 11y
15
+ ··· 8y + 1)
2
c
6
, c
8
, c
9
c
11
y
32
+ 21y
31
+ ··· + 6y + 1
c
7
, c
10
y
32
15y
31
+ ··· 89626y + 5329
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.017320 + 0.191091I
a = 0.77304 1.40886I
b = 0.436018 1.310650I
4.37117 + 5.29622I 8.10789 6.28296I
u = 1.017320 + 0.191091I
a = 0.080344 + 0.145257I
b = 0.930500 + 0.053773I
4.37117 + 5.29622I 8.10789 6.28296I
u = 1.017320 0.191091I
a = 0.77304 + 1.40886I
b = 0.436018 + 1.310650I
4.37117 5.29622I 8.10789 + 6.28296I
u = 1.017320 0.191091I
a = 0.080344 0.145257I
b = 0.930500 0.053773I
4.37117 5.29622I 8.10789 + 6.28296I
u = 0.908738 + 0.252477I
a = 0.160770 1.402060I
b = 0.185966 + 0.248413I
3.61825 0.25270I 6.38985 + 0.96511I
u = 0.908738 + 0.252477I
a = 1.69112 0.97289I
b = 0.058000 1.114600I
3.61825 0.25270I 6.38985 + 0.96511I
u = 0.908738 0.252477I
a = 0.160770 + 1.402060I
b = 0.185966 0.248413I
3.61825 + 0.25270I 6.38985 0.96511I
u = 0.908738 0.252477I
a = 1.69112 + 0.97289I
b = 0.058000 + 1.114600I
3.61825 + 0.25270I 6.38985 0.96511I
u = 0.708362 + 0.611401I
a = 1.56409 + 0.56471I
b = 0.153564 1.382420I
3.61825 + 0.25270I 6.38985 0.96511I
u = 0.708362 + 0.611401I
a = 1.17703 1.58536I
b = 0.608496 + 0.923549I
3.61825 + 0.25270I 6.38985 0.96511I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.708362 0.611401I
a = 1.56409 0.56471I
b = 0.153564 + 1.382420I
3.61825 0.25270I 6.38985 + 0.96511I
u = 0.708362 0.611401I
a = 1.17703 + 1.58536I
b = 0.608496 0.923549I
3.61825 0.25270I 6.38985 + 0.96511I
u = 0.724199 + 0.826388I
a = 0.873040 + 1.019050I
b = 0.667529 1.233440I
2.34449 + 4.73566I 1.11364 2.91588I
u = 0.724199 + 0.826388I
a = 1.62577 0.21392I
b = 1.060700 0.232760I
2.34449 + 4.73566I 1.11364 2.91588I
u = 0.724199 0.826388I
a = 0.873040 1.019050I
b = 0.667529 + 1.233440I
2.34449 4.73566I 1.11364 + 2.91588I
u = 0.724199 0.826388I
a = 1.62577 + 0.21392I
b = 1.060700 + 0.232760I
2.34449 4.73566I 1.11364 + 2.91588I
u = 0.866890 + 0.696274I
a = 1.92331 + 0.56041I
b = 0.212635 + 1.014820I
0.93480 + 2.67607I 0.38861 3.32415I
u = 0.866890 + 0.696274I
a = 2.69221 1.74930I
b = 0.171716 1.089490I
0.93480 + 2.67607I 0.38861 3.32415I
u = 0.866890 0.696274I
a = 1.92331 0.56041I
b = 0.212635 1.014820I
0.93480 2.67607I 0.38861 + 3.32415I
u = 0.866890 0.696274I
a = 2.69221 + 1.74930I
b = 0.171716 + 1.089490I
0.93480 2.67607I 0.38861 + 3.32415I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.960503 + 0.654282I
a = 0.874727 0.511465I
b = 0.27490 + 1.49232I
4.37117 5.29622I 8.10789 + 6.28296I
u = 0.960503 + 0.654282I
a = 2.47726 0.17457I
b = 0.723528 1.103510I
4.37117 5.29622I 8.10789 + 6.28296I
u = 0.960503 0.654282I
a = 0.874727 + 0.511465I
b = 0.27490 1.49232I
4.37117 + 5.29622I 8.10789 6.28296I
u = 0.960503 0.654282I
a = 2.47726 + 0.17457I
b = 0.723528 + 1.103510I
4.37117 + 5.29622I 8.10789 6.28296I
u = 0.977539 + 0.749941I
a = 0.262243 0.231216I
b = 0.494890 + 0.256259I
2.34449 + 4.73566I 1.11364 2.91588I
u = 0.977539 + 0.749941I
a = 1.72382 + 0.29569I
b = 0.336437 + 0.940681I
2.34449 + 4.73566I 1.11364 2.91588I
u = 0.977539 0.749941I
a = 0.262243 + 0.231216I
b = 0.494890 0.256259I
2.34449 4.73566I 1.11364 + 2.91588I
u = 0.977539 0.749941I
a = 1.72382 0.29569I
b = 0.336437 0.940681I
2.34449 4.73566I 1.11364 + 2.91588I
u = 0.059947 + 0.622852I
a = 0.467003 0.890621I
b = 0.378599 + 1.075260I
0.93480 2.67607I 0.38861 + 3.32415I
u = 0.059947 + 0.622852I
a = 1.186920 + 0.555131I
b = 0.645301 + 0.131928I
0.93480 2.67607I 0.38861 + 3.32415I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.059947 0.622852I
a = 0.467003 + 0.890621I
b = 0.378599 1.075260I
0.93480 + 2.67607I 0.38861 3.32415I
u = 0.059947 0.622852I
a = 1.186920 0.555131I
b = 0.645301 0.131928I
0.93480 + 2.67607I 0.38861 3.32415I
18
IV. I
u
4
= hb 1, 2a 2u + 1, u
3
+ u
2
1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
2
+ u 1
a
4
=
u
2
+ 1
u
2
a
8
=
u
1
2
1
a
7
=
1
2
u
1
2
u
2
+
1
2
u +
1
2
a
11
=
u +
1
2
1
a
9
=
2u
2
a
10
=
3
2
u
1
2
u
2
1
2
u +
3
2
a
10
=
3
2
u
1
2
u
2
1
2
u +
3
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
4
u
2
+
17
4
u +
7
4
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
1
c
2
u
3
+ u
2
+ 2u + 1
c
3
u
3
c
4
u
3
u
2
+ 2u 1
c
5
u
3
u
2
+ 1
c
6
, c
8
(u + 1)
3
c
7
8(8u
3
+ 4u
2
+ 4u + 1)
c
9
, c
11
(u 1)
3
c
10
8(8u
3
4u
2
+ 4u 1)
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
3
y
2
+ 2y 1
c
2
, c
4
y
3
+ 3y
2
+ 2y 1
c
3
y
3
c
6
, c
8
, c
9
c
11
(y 1)
3
c
7
, c
10
64(64y
3
+ 48y
2
+ 8y 1)
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.37744 + 0.74486I
b = 1.00000
4.66906 + 2.82812I 1.06503 2.38969I
u = 0.877439 0.744862I
a = 1.37744 0.74486I
b = 1.00000
4.66906 2.82812I 1.06503 + 2.38969I
u = 0.754878
a = 0.254878
b = 1.00000
0.531480 7.38010
22
V. I
u
5
= hb a 1, a
2
+ a + 2, u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
1
a
2
=
1
1
a
3
=
0
1
a
6
=
1
0
a
4
=
1
1
a
8
=
a
a + 1
a
7
=
a + 1
a + 2
a
11
=
1
a 1
a
9
=
1
2
a
10
=
1
a
a
10
=
1
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
c
10
(u 1)
2
c
2
, c
3
, c
4
(u + 1)
2
c
6
, c
8
, c
9
c
11
u
2
+ u + 2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
7
c
10
(y 1)
2
c
6
, c
8
, c
9
c
11
y
2
+ 3y + 4
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.50000 + 1.32288I
b = 0.50000 + 1.32288I
8.22467 14.0000
u = 1.00000
a = 0.50000 1.32288I
b = 0.50000 1.32288I
8.22467 14.0000
26
VI. I
u
6
= h2b a + 1, a
2
2a + 5, u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
1
a
2
=
1
1
a
3
=
0
1
a
6
=
1
0
a
4
=
1
1
a
8
=
a
1
2
a
1
2
a
7
=
1
2
a
1
2
1
a
11
=
1
2
a
3
2
1
a
9
=
1
2
a
1
2
0
a
10
=
1
2
a
3
2
1
2
a +
1
2
a
10
=
1
2
a
3
2
1
2
a +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u 1)
2
c
2
, c
5
(u + 1)
2
c
3
, c
6
, c
8
c
9
, c
11
u
2
+ 1
c
7
u
2
2u + 2
c
10
u
2
+ 2u + 2
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y 1)
2
c
3
, c
6
, c
8
c
9
, c
11
(y + 1)
2
c
7
, c
10
y
2
+ 4
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000 + 2.00000I
b = 1.000000I
4.93480 12.0000
u = 1.00000
a = 1.00000 2.00000I
b = 1.000000I
4.93480 12.0000
30
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
3
+ u
2
1)(u
5
+ u
4
+ 2u + 1)
2
(u
16
+ u
15
+ ··· + 2u + 1)
2
· (u
28
+ 2u
27
+ ··· + 3u 4)
c
2
(u + 1)
4
(u
3
+ u
2
+ 2u + 1)(u
5
+ u
4
+ 4u
3
+ 2u
2
+ 4u + 1)
2
· ((u
16
+ 5u
15
+ ··· 4u
2
+ 1)
2
)(u
28
+ 10u
27
+ ··· + 97u + 16)
c
3
u
3
(u + 1)
2
(u
2
+ 1)(u
5
u
4
+ 2u 1)
2
(u
16
u
15
+ ··· 2u + 1)
2
· (u
28
+ 3u
27
+ ··· + 736u + 128)
c
4
(u 1)
2
(u + 1)
2
(u
3
u
2
+ 2u 1)(u
5
+ u
4
+ 4u
3
+ 2u
2
+ 4u + 1)
2
· ((u
16
+ 5u
15
+ ··· 4u
2
+ 1)
2
)(u
28
+ 10u
27
+ ··· + 97u + 16)
c
5
(u 1)
2
(u + 1)
2
(u
3
u
2
+ 1)(u
5
+ u
4
+ 2u + 1)
2
· ((u
16
+ u
15
+ ··· + 2u + 1)
2
)(u
28
+ 2u
27
+ ··· + 3u 4)
c
6
, c
8
(u + 1)
3
(u
2
+ 1)(u
2
+ u + 2)
· (u
10
+ u
9
+ 2u
8
+ 4u
7
+ 4u
6
+ 5u
5
+ 3u
4
+ u
3
+ u
2
+ 1)
· (u
28
3u
27
+ ··· 5u 1)(u
32
+ 5u
31
+ ··· + 8u + 1)
c
7
64(u 1)
2
(u
2
2u + 2)(8u
3
+ 4u
2
+ 4u + 1)
· (u
10
+ 4u
9
+ 8u
8
+ 6u
7
+ 6u
6
+ 7u
5
+ 25u
4
+ 43u
3
+ 56u
2
+ 36u + 8)
· (8u
28
12u
27
+ ··· + 4u + 2)(u
32
+ u
31
+ ··· 402u + 73)
c
9
, c
11
(u 1)
3
(u
2
+ 1)(u
2
+ u + 2)
· (u
10
+ u
9
+ 2u
8
+ 4u
7
+ 4u
6
+ 5u
5
+ 3u
4
+ u
3
+ u
2
+ 1)
· (u
28
3u
27
+ ··· 5u 1)(u
32
+ 5u
31
+ ··· + 8u + 1)
c
10
64(u 1)
2
(u
2
+ 2u + 2)(8u
3
4u
2
+ 4u 1)
· (u
10
+ 4u
9
+ 8u
8
+ 6u
7
+ 6u
6
+ 7u
5
+ 25u
4
+ 43u
3
+ 56u
2
+ 36u + 8)
· (8u
28
12u
27
+ ··· + 4u + 2)(u
32
+ u
31
+ ··· 402u + 73)
31
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y 1)
4
(y
3
y
2
+ 2y 1)(y
5
y
4
+ 4y
3
2y
2
+ 4y 1)
2
· ((y
16
5y
15
+ ··· 4y
2
+ 1)
2
)(y
28
10y
27
+ ··· 97y + 16)
c
2
, c
4
(y 1)
4
(y
3
+ 3y
2
+ 2y 1)(y
5
+ 7y
4
+ 20y
3
+ 26y
2
+ 12y 1)
2
· ((y
16
+ 11y
15
+ ··· 8y + 1)
2
)(y
28
+ 18y
27
+ ··· + 8543y + 256)
c
3
y
3
(y 1)
2
(y + 1)
2
(y
5
y
4
+ 4y
3
2y
2
+ 4y 1)
2
· ((y
16
5y
15
+ ··· 4y
2
+ 1)
2
)(y
28
5y
27
+ ··· 238592y + 16384)
c
6
, c
8
, c
9
c
11
(y 1)
3
(y + 1)
2
(y
2
+ 3y + 4)
· (y
10
+ 3y
9
+ 4y
8
4y
7
12y
6
3y
5
+ 11y
4
+ 13y
3
+ 7y
2
+ 2y + 1)
· (y
28
+ 11y
27
+ ··· 51y + 1)(y
32
+ 21y
31
+ ··· + 6y + 1)
c
7
, c
10
4096(y 1)
2
(y
2
+ 4)(64y
3
+ 48y
2
+ 8y 1)
· (y
10
+ 28y
8
+ ··· 400y + 64)(64y
28
+ 176y
27
+ ··· + 40y + 4)
· (y
32
15y
31
+ ··· 89626y + 5329)
32