11a
175
(K11a
175
)
A knot diagram
1
Linearized knot diagam
6 1 8 11 10 2 3 4 5 9 7
Solving Sequence
2,6
7 1 3 8 4 9 11 10 5
c
6
c
1
c
2
c
7
c
3
c
8
c
11
c
10
c
5
c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
11
u
10
2u
9
+ 2u
8
+ 3u
7
2u
6
2u
5
+ 2u
3
u + 1i
I
u
2
= hu
40
u
39
+ ··· 3u
3
+ 1i
I
u
3
= hu + 1i
* 3 irreducible components of dim
C
= 0, with total 52 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
11
u
10
2u
9
+ 2u
8
+ 3u
7
2u
6
2u
5
+ 2u
3
u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
8
=
u
8
u
6
+ u
4
+ 1
u
8
2u
6
+ 2u
4
a
4
=
u
10
3u
8
u
7
+ 4u
6
+ 2u
5
2u
4
3u
3
+ u 1
u
8
+ 2u
6
2u
4
a
9
=
u
10
u
8
u
7
+ u
6
+ 2u
5
+ u
4
u
3
u
3
u
a
11
=
u
3
u
5
u
3
+ u
a
10
=
2u
10
+ u
9
+ 4u
8
u
7
5u
6
u
5
+ 2u
4
+ 3u
3
u
2
+ 1
u
a
5
=
u
10
3u
8
u
7
+ 5u
6
+ 2u
5
3u
4
3u
3
+ u 1
u
2
a
5
=
u
10
3u
8
u
7
+ 5u
6
+ 2u
5
3u
4
3u
3
+ u 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
10
+ 4u
9
12u
8
8u
7
+ 16u
6
+ 12u
5
4u
4
8u
3
4u
2
+ 4u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
9
u
11
u
10
2u
9
+ 2u
8
+ 3u
7
2u
6
2u
5
+ 2u
3
u + 1
c
2
, c
10
u
11
+ 5u
10
+ ··· + u + 1
c
3
, c
7
, c
8
u
11
+ 4u
10
+ 3u
9
3u
8
+ 3u
7
+ 10u
6
u
5
+ u
4
+ 6u
3
5u
2
+ 4
c
4
, c
11
u
11
+ u
9
+ 2u
8
+ 7u
7
+ u
6
+ 4u
5
3u
4
+ 12u
3
8u
2
+ 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
y
11
5y
10
+ ··· + y 1
c
2
, c
10
y
11
+ 3y
10
+ ··· 7y 1
c
3
, c
7
, c
8
y
11
10y
10
+ ··· + 40y 16
c
4
, c
11
y
11
+ 2y
10
+ ··· + 41y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.472789 + 0.800775I
9.12060 3.24476I 5.98156 + 0.51441I
u = 0.472789 0.800775I
9.12060 + 3.24476I 5.98156 0.51441I
u = 0.912079
1.65611 5.73710
u = 1.054490 + 0.371149I
4.87523 4.09967I 8.95070 + 5.15592I
u = 1.054490 0.371149I
4.87523 + 4.09967I 8.95070 5.15592I
u = 1.081800 + 0.517146I
2.76698 + 9.75515I 4.05162 10.29185I
u = 1.081800 0.517146I
2.76698 9.75515I 4.05162 + 10.29185I
u = 1.094170 + 0.624458I
5.3908 13.9605I 0.53068 + 9.48051I
u = 1.094170 0.624458I
5.3908 + 13.9605I 0.53068 9.48051I
u = 0.361975 + 0.559972I
1.36102 + 0.98826I 4.35867 1.84291I
u = 0.361975 0.559972I
1.36102 0.98826I 4.35867 + 1.84291I
5
II. I
u
2
= hu
40
u
39
+ · · · 3u
3
+ 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
8
=
u
8
u
6
+ u
4
+ 1
u
8
2u
6
+ 2u
4
a
4
=
u
13
2u
11
+ 3u
9
2u
7
+ 2u
5
2u
3
+ u
u
13
3u
11
+ 5u
9
4u
7
+ 2u
5
u
3
+ u
a
9
=
u
18
+ 3u
16
6u
14
+ 7u
12
7u
10
+ 7u
8
6u
6
+ 4u
4
u
2
+ 1
u
18
+ 4u
16
9u
14
+ 12u
12
11u
10
+ 8u
8
6u
6
+ 4u
4
u
2
a
11
=
u
3
u
5
u
3
+ u
a
10
=
u
39
u
38
+ ··· + u
3
1
u
38
+ 9u
36
+ ··· + u
3
1
a
5
=
u
21
+ 4u
19
9u
17
+ 12u
15
10u
13
+ 6u
11
3u
9
+ 2u
7
+ u
5
2u
3
+ u
u
23
+ 5u
21
+ ··· 2u
3
+ u
a
5
=
u
21
+ 4u
19
9u
17
+ 12u
15
10u
13
+ 6u
11
3u
9
+ 2u
7
+ u
5
2u
3
+ u
u
23
+ 5u
21
+ ··· 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
38
32u
36
+ 140u
34
416u
32
+ 928u
30
1644u
28
+ 2412u
26
3040u
24
+ 3380u
22
3364u
20
+ 2992u
18
+ 4u
17
2368u
16
16u
15
+ 1668u
14
+ 36u
13
1048u
12
52u
11
+
580u
10
+ 52u
9
268u
8
44u
7
+ 100u
6
+ 32u
5
28u
4
20u
3
+ 8u
2
+ 8u + 2
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
9
u
40
u
39
+ ··· 3u
3
+ 1
c
2
, c
10
u
40
+ 17u
39
+ ··· + 2u
2
+ 1
c
3
, c
7
, c
8
(u
20
2u
19
+ ··· 2u + 1)
2
c
4
, c
11
u
40
3u
39
+ ··· + 6u + 3
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
y
40
17y
39
+ ··· + 2y
2
+ 1
c
2
, c
10
y
40
+ 11y
39
+ ··· + 4y + 1
c
3
, c
7
, c
8
(y
20
22y
19
+ ··· 30y + 1)
2
c
4
, c
11
y
40
5y
39
+ ··· 282y + 9
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.989179 + 0.332673I
1.87696 + 1.08776I 3.66948 0.80831I
u = 0.989179 0.332673I
1.87696 1.08776I 3.66948 + 0.80831I
u = 0.912778 + 0.528712I
0.112919 1.81750 + 0.I
u = 0.912778 0.528712I
0.112919 1.81750 + 0.I
u = 0.515254 + 0.788495I
7.58837 5.35722I 3.80298 + 4.77693I
u = 0.515254 0.788495I
7.58837 + 5.35722I 3.80298 4.77693I
u = 0.502219 + 0.792060I
9.28815 6.23474 + 0.I
u = 0.502219 0.792060I
9.28815 6.23474 + 0.I
u = 0.461488 + 0.804643I
7.28190 + 8.60190I 3.29856 5.07396I
u = 0.461488 0.804643I
7.28190 8.60190I 3.29856 + 5.07396I
u = 1.047750 + 0.294823I
4.22715 + 2.78049I 7.53200 3.56896I
u = 1.047750 0.294823I
4.22715 2.78049I 7.53200 + 3.56896I
u = 0.475874 + 0.769365I
3.57846 + 1.46542I 0.189647 0.302471I
u = 0.475874 0.769365I
3.57846 1.46542I 0.189647 + 0.302471I
u = 1.112840 + 0.027837I
3.57846 + 1.46542I 0.189647 0.302471I
u = 1.112840 0.027837I
3.57846 1.46542I 0.189647 + 0.302471I
u = 0.976421 + 0.536361I
0.79488 4.38017I 2.87668 + 6.69250I
u = 0.976421 0.536361I
0.79488 + 4.38017I 2.87668 6.69250I
u = 1.119580 + 0.049168I
1.78732 6.69475I 2.60998 + 4.97701I
u = 1.119580 0.049168I
1.78732 + 6.69475I 2.60998 4.97701I
u = 0.674204 + 0.548152I
0.79488 + 4.38017I 2.87668 6.69250I
u = 0.674204 0.548152I
0.79488 4.38017I 2.87668 + 6.69250I
u = 1.065390 + 0.469454I
4.22715 + 2.78049I 7.53200 3.56896I
u = 1.065390 0.469454I
4.22715 2.78049I 7.53200 + 3.56896I
u = 1.053770 + 0.517468I
0.55874 5.32051I 0.06135 + 6.50240I
u = 1.053770 0.517468I
0.55874 + 5.32051I 0.06135 6.50240I
u = 0.565990 + 0.536897I
1.96889 5.82360 + 0.I
u = 0.565990 0.536897I
1.96889 5.82360 + 0.I
u = 1.062890 + 0.635226I
5.95204 1.53406 + 0.I
u = 1.062890 0.635226I
5.95204 1.53406 + 0.I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.077540 + 0.613425I
1.78732 6.69475I 2.60998 + 4.97701I
u = 1.077540 0.613425I
1.78732 + 6.69475I 2.60998 4.97701I
u = 1.071010 + 0.632590I
7.58837 + 5.35722I 3.80298 4.77693I
u = 1.071010 0.632590I
7.58837 5.35722I 3.80298 + 4.77693I
u = 1.087960 + 0.626575I
7.28190 + 8.60190I 3.29856 5.07396I
u = 1.087960 0.626575I
7.28190 8.60190I 3.29856 + 5.07396I
u = 0.289073 + 0.622325I
0.55874 5.32051I 0.06135 + 6.50240I
u = 0.289073 0.622325I
0.55874 + 5.32051I 0.06135 6.50240I
u = 0.138437 + 0.513103I
1.87696 + 1.08776I 3.66948 0.80831I
u = 0.138437 0.513103I
1.87696 1.08776I 3.66948 + 0.80831I
10
III. I
u
3
= hu + 1i
(i) Arc colorings
a
2
=
0
1
a
6
=
1
0
a
7
=
1
1
a
1
=
1
1
a
3
=
1
0
a
8
=
2
1
a
4
=
1
1
a
9
=
1
0
a
11
=
1
1
a
10
=
2
1
a
5
=
1
1
a
5
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
10
u + 1
c
4
, c
11
u
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
10
y 1
c
4
, c
11
y
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
1.64493 6.00000
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
9
(u + 1)(u
11
u
10
2u
9
+ 2u
8
+ 3u
7
2u
6
2u
5
+ 2u
3
u + 1)
· (u
40
u
39
+ ··· 3u
3
+ 1)
c
2
, c
10
(u + 1)(u
11
+ 5u
10
+ ··· + u + 1)(u
40
+ 17u
39
+ ··· + 2u
2
+ 1)
c
3
, c
7
, c
8
(u + 1)(u
11
+ 4u
10
+ ··· 5u
2
+ 4)
· (u
20
2u
19
+ ··· 2u + 1)
2
c
4
, c
11
u(u
11
+ u
9
+ 2u
8
+ 7u
7
+ u
6
+ 4u
5
3u
4
+ 12u
3
8u
2
+ 5u + 1)
· (u
40
3u
39
+ ··· + 6u + 3)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
(y 1)(y
11
5y
10
+ ··· + y 1)(y
40
17y
39
+ ··· + 2y
2
+ 1)
c
2
, c
10
(y 1)(y
11
+ 3y
10
+ ··· 7y 1)(y
40
+ 11y
39
+ ··· + 4y + 1)
c
3
, c
7
, c
8
(y 1)(y
11
10y
10
+ ··· + 40y 16)(y
20
22y
19
+ ··· 30y + 1)
2
c
4
, c
11
y(y
11
+ 2y
10
+ ··· + 41y 1)(y
40
5y
39
+ ··· 282y + 9)
16