11a
177
(K11a
177
)
A knot diagram
1
Linearized knot diagam
6 1 11 9 10 2 3 4 5 8 7
Solving Sequence
2,6
7 1 3 8 11 4 9 10 5
c
6
c
1
c
2
c
7
c
11
c
3
c
8
c
10
c
5
c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
48
u
47
+ ··· + 2u
2
1i
* 1 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
48
u
47
+ · · · + 2u
2
1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
8
=
u
8
u
6
+ u
4
+ 1
u
8
2u
6
+ 2u
4
a
11
=
u
3
u
5
u
3
+ u
a
4
=
u
11
2u
9
+ 2u
7
u
3
u
13
3u
11
+ 5u
9
4u
7
+ 2u
5
u
3
+ u
a
9
=
u
32
7u
30
+ ··· + 2u
12
+ 1
u
34
8u
32
+ ··· + 4u
6
+ u
2
a
10
=
u
21
4u
19
+ 9u
17
12u
15
+ 12u
13
10u
11
+ 9u
9
6u
7
+ 3u
5
+ u
u
21
5u
19
+ 13u
17
20u
15
+ 20u
13
13u
11
+ 7u
9
4u
7
+ 3u
5
u
3
+ u
a
5
=
u
42
+ 9u
40
+ ··· u
2
+ 1
u
42
+ 10u
40
+ ··· + 2u
4
u
2
a
5
=
u
42
+ 9u
40
+ ··· u
2
+ 1
u
42
+ 10u
40
+ ··· + 2u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
46
+ 44u
44
+ ··· + 8u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
48
u
47
+ ··· + 2u
2
1
c
2
u
48
+ 23u
47
+ ··· + 4u + 1
c
3
u
48
+ 5u
47
+ ··· + 440u + 41
c
4
, c
5
, c
8
c
9
u
48
u
47
+ ··· 2u 1
c
7
u
48
+ u
47
+ ··· 46u 13
c
10
u
48
13u
47
+ ··· + 248u 23
c
11
u
48
3u
47
+ ··· + 92u 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
48
23y
47
+ ··· 4y + 1
c
2
y
48
+ 5y
47
+ ··· 12y
2
+ 1
c
3
y
48
+ 17y
47
+ ··· 50264y + 1681
c
4
, c
5
, c
8
c
9
y
48
55y
47
+ ··· 4y + 1
c
7
y
48
7y
47
+ ··· 6692y + 169
c
10
y
48
7y
47
+ ··· 5752y + 529
c
11
y
48
+ 13y
47
+ ··· 8824y + 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.950359
7.68002 11.9160
u = 0.906245 + 0.560228I
6.74396 + 1.23314I 7.83364 + 0.66658I
u = 0.906245 0.560228I
6.74396 1.23314I 7.83364 0.66658I
u = 0.654967 + 0.639668I
6.00272 5.94733I 6.48259 + 5.46714I
u = 0.654967 0.639668I
6.00272 + 5.94733I 6.48259 5.46714I
u = 0.958032 + 0.533471I
0.422311 + 0.763813I 4.66179 + 1.11475I
u = 0.958032 0.533471I
0.422311 0.763813I 4.66179 1.11475I
u = 1.079460 + 0.276851I
2.59116 + 0.36031I 7.93807 0.87976I
u = 1.079460 0.276851I
2.59116 0.36031I 7.93807 + 0.87976I
u = 0.612298 + 0.617824I
1.43265 + 3.79656I 3.21409 7.28282I
u = 0.612298 0.617824I
1.43265 3.79656I 3.21409 + 7.28282I
u = 1.009290 + 0.540403I
1.00278 4.13351I 2.80982 + 6.67284I
u = 1.009290 0.540403I
1.00278 + 4.13351I 2.80982 6.67284I
u = 1.118000 + 0.248646I
4.32121 + 2.98517I 12.02372 4.32221I
u = 1.118000 0.248646I
4.32121 2.98517I 12.02372 + 4.32221I
u = 1.109880 + 0.332950I
5.19194 3.05995I 13.8975 + 5.0529I
u = 1.109880 0.332950I
5.19194 + 3.05995I 13.8975 5.0529I
u = 0.320233 + 0.770338I
7.65892 + 8.01718I 7.88582 4.62371I
u = 0.320233 0.770338I
7.65892 8.01718I 7.88582 + 4.62371I
u = 1.144450 + 0.242249I
12.21720 5.14750I 14.0897 + 2.5540I
u = 1.144450 0.242249I
12.21720 + 5.14750I 14.0897 2.5540I
u = 0.466321 + 0.682642I
3.08169 1.06539I 4.15324 + 0.48438I
u = 0.466321 0.682642I
3.08169 + 1.06539I 4.15324 0.48438I
u = 0.541320 + 0.609466I
2.38297 0.42475I 0.428840 0.154422I
u = 0.541320 0.609466I
2.38297 + 0.42475I 0.428840 + 0.154422I
u = 0.330482 + 0.744977I
0.08939 5.70419I 5.22111 + 6.43741I
u = 0.330482 0.744977I
0.08939 + 5.70419I 5.22111 6.43741I
u = 1.143670 + 0.342258I
13.35450 + 4.59259I 15.0956 3.6225I
u = 1.143670 0.342258I
13.35450 4.59259I 15.0956 + 3.6225I
u = 1.050160 + 0.567901I
4.79213 + 5.90007I 7.32134 5.68166I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.050160 0.567901I
4.79213 5.90007I 7.32134 + 5.68166I
u = 0.346872 + 0.703599I
1.51359 + 2.15734I 1.22557 1.03658I
u = 0.346872 0.703599I
1.51359 2.15734I 1.22557 + 1.03658I
u = 1.108460 + 0.518737I
3.93668 + 4.44888I 11.97527 2.81455I
u = 1.108460 0.518737I
3.93668 4.44888I 11.97527 + 2.81455I
u = 1.107780 + 0.553922I
0.69945 6.98562I 4.89380 + 5.04107I
u = 1.107780 0.553922I
0.69945 + 6.98562I 4.89380 5.04107I
u = 1.134660 + 0.506389I
12.24490 3.33222I 13.52387 + 3.39581I
u = 1.134660 0.506389I
12.24490 + 3.33222I 13.52387 3.39581I
u = 1.122190 + 0.562178I
2.22657 + 10.65640I 8.51135 10.01533I
u = 1.122190 0.562178I
2.22657 10.65640I 8.51135 + 10.01533I
u = 1.132630 + 0.566501I
10.0472 13.0450I 11.01452 + 8.25936I
u = 1.132630 0.566501I
10.0472 + 13.0450I 11.01452 8.25936I
u = 0.180677 + 0.698013I
9.54554 1.19929I 10.13609 + 0.35134I
u = 0.180677 0.698013I
9.54554 + 1.19929I 10.13609 0.35134I
u = 0.240215 + 0.625865I
1.54227 + 0.02620I 8.94545 1.26503I
u = 0.240215 0.625865I
1.54227 0.02620I 8.94545 + 1.26503I
u = 0.563965
0.872825 11.2330
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
48
u
47
+ ··· + 2u
2
1
c
2
u
48
+ 23u
47
+ ··· + 4u + 1
c
3
u
48
+ 5u
47
+ ··· + 440u + 41
c
4
, c
5
, c
8
c
9
u
48
u
47
+ ··· 2u 1
c
7
u
48
+ u
47
+ ··· 46u 13
c
10
u
48
13u
47
+ ··· + 248u 23
c
11
u
48
3u
47
+ ··· + 92u 9
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
48
23y
47
+ ··· 4y + 1
c
2
y
48
+ 5y
47
+ ··· 12y
2
+ 1
c
3
y
48
+ 17y
47
+ ··· 50264y + 1681
c
4
, c
5
, c
8
c
9
y
48
55y
47
+ ··· 4y + 1
c
7
y
48
7y
47
+ ··· 6692y + 169
c
10
y
48
7y
47
+ ··· 5752y + 529
c
11
y
48
+ 13y
47
+ ··· 8824y + 81
8