11a
179
(K11a
179
)
A knot diagram
1
Linearized knot diagam
7 1 8 9 11 2 3 4 5 6 10
Solving Sequence
5,11
6 10 1 9 4 8 3 2 7
c
5
c
10
c
11
c
9
c
4
c
8
c
3
c
2
c
7
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
10
+ 3u
8
+ u
7
+ 4u
6
+ 2u
5
+ u
4
+ 2u
3
u
2
1i
I
u
2
= hu
18
u
17
+ ··· 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 28 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
10
+ 3u
8
+ u
7
+ 4u
6
+ 2u
5
+ u
4
+ 2u
3
u
2
1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
10
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
u
3
u
3
+ u
a
4
=
u
6
u
4
+ 1
u
6
2u
4
u
2
a
8
=
u
9
2u
7
u
5
+ 2u
3
+ u
u
9
3u
7
3u
5
+ u
a
3
=
u
9
u
8
2u
7
3u
6
2u
5
3u
4
+ 1
u
9
u
8
3u
7
3u
6
4u
5
3u
4
2u
3
+ 1
a
2
=
u
9
u
8
2u
7
3u
6
3u
5
3u
4
+ 1
u
9
u
8
2u
7
3u
6
3u
5
3u
4
u
3
+ 1
a
7
=
u
9
+ u
8
2u
7
+ u
6
u
5
+ u
4
+ 2u
3
u
2
+ u
u
9
+ u
8
2u
7
+ u
6
u
5
+ 2u
3
2u
2
+ u 1
a
7
=
u
9
+ u
8
2u
7
+ u
6
u
5
+ u
4
+ 2u
3
u
2
+ u
u
9
+ u
8
2u
7
+ u
6
u
5
+ 2u
3
2u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
+ 4u
8
8u
7
+ 4u
6
4u
5
+ 4u
4
+ 8u
3
8u
2
+ 4u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
u
10
+ 3u
8
u
7
+ 4u
6
2u
5
+ u
4
2u
3
u
2
1
c
2
, c
11
u
10
+ 6u
9
+ 17u
8
+ 25u
7
+ 16u
6
8u
5
21u
4
14u
3
u
2
+ 2u + 1
c
3
, c
4
, c
7
c
8
, c
9
u
10
3u
9
2u
8
+ 11u
7
u
6
13u
5
+ 6u
4
+ 2u
3
3u
2
+ u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
y
10
+ 6y
9
+ 17y
8
+ 25y
7
+ 16y
6
8y
5
21y
4
14y
3
y
2
+ 2y + 1
c
2
, c
11
y
10
2y
9
+ ··· 6y + 1
c
3
, c
4
, c
7
c
8
, c
9
y
10
13y
9
+ ··· + 11y + 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.405701 + 0.957098I
2.02767 + 5.09588I 7.00928 9.34423I
u = 0.405701 0.957098I
2.02767 5.09588I 7.00928 + 9.34423I
u = 0.928426
11.5246 5.70350
u = 0.452669 + 1.159180I
8.16772 8.20953I 10.99080 + 7.49201I
u = 0.452669 1.159180I
8.16772 + 8.20953I 10.99080 7.49201I
u = 0.300956 + 0.659835I
0.05290 1.41771I 1.07087 + 5.41263I
u = 0.300956 0.659835I
0.05290 + 1.41771I 1.07087 5.41263I
u = 0.650332
1.85975 4.37780
u = 0.486972 + 1.282400I
19.3539 + 10.0674I 11.88841 5.78919I
u = 0.486972 1.282400I
19.3539 10.0674I 11.88841 + 5.78919I
5
II. I
u
2
= hu
18
u
17
+ 6u
16
6u
15
+ 16u
14
16u
13
+ 21u
12
21u
11
+ 10u
10
10u
9
7u
8
+ 7u
7
9u
6
+ 9u
5
u
4
+ u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
10
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
u
3
u
3
+ u
a
4
=
u
6
u
4
+ 1
u
6
2u
4
u
2
a
8
=
u
9
2u
7
u
5
+ 2u
3
+ u
u
9
3u
7
3u
5
+ u
a
3
=
u
12
+ 3u
10
+ 3u
8
2u
6
4u
4
u
2
+ 1
u
12
+ 4u
10
+ 6u
8
+ 2u
6
3u
4
2u
2
a
2
=
u
16
+ 5u
14
+ 11u
12
+ 10u
10
u
8
10u
6
6u
4
u + 1
2u
17
+ u
16
+ ··· 3u + 2
a
7
=
u
15
+ 4u
13
+ 6u
11
8u
7
6u
5
+ 2u
3
+ 2u
u
15
+ 5u
13
+ 10u
11
+ 7u
9
4u
7
8u
5
2u
3
+ u
a
7
=
u
15
+ 4u
13
+ 6u
11
8u
7
6u
5
+ 2u
3
+ 2u
u
15
+ 5u
13
+ 10u
11
+ 7u
9
4u
7
8u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
15
+ 20u
13
+ 40u
11
+ 24u
9
28u
7
44u
5
4u
3
+ 12u 10
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
u
18
+ u
17
+ ··· + 2u + 1
c
2
, c
11
u
18
+ 11u
17
+ ··· + 6u
2
+ 1
c
3
, c
4
, c
7
c
8
, c
9
(u
9
+ u
8
6u
7
5u
6
+ 11u
5
+ 7u
4
6u
3
4u
2
u + 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
y
18
+ 11y
17
+ ··· + 6y
2
+ 1
c
2
, c
11
y
18
9y
17
+ ··· + 12y + 1
c
3
, c
4
, c
7
c
8
, c
9
(y
9
13y
8
+ 68y
7
183y
6
+ 269y
5
211y
4
+ 80y
3
18y
2
+ 9y 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.163695 + 1.039420I
3.85110 13.61277 + 0.I
u = 0.163695 1.039420I
3.85110 13.61277 + 0.I
u = 0.937573 + 0.014479I
15.4587 4.9949I 8.86627 + 2.90812I
u = 0.937573 0.014479I
15.4587 + 4.9949I 8.86627 2.90812I
u = 0.306317 + 0.859721I
0.44198 1.55423I 2.94040 + 4.30527I
u = 0.306317 0.859721I
0.44198 + 1.55423I 2.94040 4.30527I
u = 0.406229 + 1.141860I
5.04794 + 3.86354I 8.03791 4.00946I
u = 0.406229 1.141860I
5.04794 3.86354I 8.03791 + 4.00946I
u = 0.371894 + 1.189500I
8.79106 12.57530 + 0.I
u = 0.371894 1.189500I
8.79106 12.57530 + 0.I
u = 0.734633 + 0.083595I
5.04794 + 3.86354I 8.03791 4.00946I
u = 0.734633 0.083595I
5.04794 3.86354I 8.03791 + 4.00946I
u = 0.476691 + 1.280860I
15.4587 4.9949I 8.86627 + 2.90812I
u = 0.476691 1.280860I
15.4587 + 4.9949I 8.86627 2.90812I
u = 0.470193 + 1.289670I
19.4826 12.12278 + 0.I
u = 0.470193 1.289670I
19.4826 12.12278 + 0.I
u = 0.411845 + 0.333652I
0.44198 1.55423I 2.94040 + 4.30527I
u = 0.411845 0.333652I
0.44198 + 1.55423I 2.94040 4.30527I
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
(u
10
+ 3u
8
+ ··· u
2
1)(u
18
+ u
17
+ ··· + 2u + 1)
c
2
, c
11
(u
10
+ 6u
9
+ 17u
8
+ 25u
7
+ 16u
6
8u
5
21u
4
14u
3
u
2
+ 2u + 1)
· (u
18
+ 11u
17
+ ··· + 6u
2
+ 1)
c
3
, c
4
, c
7
c
8
, c
9
(u
9
+ u
8
6u
7
5u
6
+ 11u
5
+ 7u
4
6u
3
4u
2
u + 1)
2
· (u
10
3u
9
2u
8
+ 11u
7
u
6
13u
5
+ 6u
4
+ 2u
3
3u
2
+ u 2)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
(y
10
+ 6y
9
+ 17y
8
+ 25y
7
+ 16y
6
8y
5
21y
4
14y
3
y
2
+ 2y + 1)
· (y
18
+ 11y
17
+ ··· + 6y
2
+ 1)
c
2
, c
11
(y
10
2y
9
+ ··· 6y + 1)(y
18
9y
17
+ ··· + 12y + 1)
c
3
, c
4
, c
7
c
8
, c
9
(y
9
13y
8
+ 68y
7
183y
6
+ 269y
5
211y
4
+ 80y
3
18y
2
+ 9y 1)
2
· (y
10
13y
9
+ ··· + 11y + 4)
11