11a
180
(K11a
180
)
A knot diagram
1
Linearized knot diagam
7 1 8 11 10 2 3 4 5 6 9
Solving Sequence
6,11
10 5 4 9 1 8 3 2 7
c
10
c
5
c
4
c
9
c
11
c
8
c
3
c
2
c
7
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
44
+ u
43
+ ··· + u
2
+ 1i
* 1 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
44
+ u
43
+ · · · + u
2
+ 1i
(i) Arc colorings
a
6
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
4
=
u
3
2u
u
3
+ u
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
6
3u
4
+ 2u
2
+ 1
u
8
4u
6
+ 4u
4
a
8
=
u
10
+ 5u
8
8u
6
+ 3u
4
+ u
2
+ 1
u
10
4u
8
+ 5u
6
2u
4
+ u
2
a
3
=
u
17
+ 8u
15
25u
13
+ 36u
11
19u
9
4u
7
+ 2u
5
+ 4u
3
u
u
17
7u
15
+ 19u
13
24u
11
+ 13u
9
2u
7
+ u
a
2
=
u
31
14u
29
+ ··· + 4u
5
+ 8u
3
u
33
15u
31
+ ··· + 4u
5
+ u
a
7
=
u
24
11u
22
+ ··· + 2u
2
+ 1
u
24
+ 10u
22
+ ··· + 8u
6
4u
4
a
7
=
u
24
11u
22
+ ··· + 2u
2
+ 1
u
24
+ 10u
22
+ ··· + 8u
6
4u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
42
+ 76u
40
+ ··· 8u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
44
+ u
43
+ ··· + u
2
+ 1
c
2
u
44
+ 25u
43
+ ··· + 2u + 1
c
3
, c
7
, c
8
u
44
u
43
+ ··· + 16u + 5
c
4
u
44
3u
43
+ ··· 8u + 3
c
5
, c
9
, c
10
u
44
+ u
43
+ ··· + u
2
+ 1
c
11
u
44
11u
43
+ ··· 12u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
44
+ 25y
43
+ ··· + 2y + 1
c
2
y
44
11y
43
+ ··· + 6y + 1
c
3
, c
7
, c
8
y
44
47y
43
+ ··· 726y + 25
c
4
y
44
+ 5y
43
+ ··· 70y + 9
c
5
, c
9
, c
10
y
44
39y
43
+ ··· + 2y + 1
c
11
y
44
+ y
43
+ ··· + 62y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.907981 + 0.307169I
7.95121 + 4.48081I 3.24122 4.16997I
u = 0.907981 0.307169I
7.95121 4.48081I 3.24122 + 4.16997I
u = 0.864630 + 0.288338I
4.16526 + 0.15305I 0.227540 + 0.929725I
u = 0.864630 0.288338I
4.16526 0.15305I 0.227540 0.929725I
u = 0.842517 + 0.328770I
7.81717 4.88382I 2.90557 + 2.15624I
u = 0.842517 0.328770I
7.81717 + 4.88382I 2.90557 2.15624I
u = 1.170600 + 0.135808I
0.38378 3.13770I 2.56284 + 4.58087I
u = 1.170600 0.135808I
0.38378 + 3.13770I 2.56284 4.58087I
u = 0.238444 + 0.753257I
9.78827 + 8.91254I 5.51225 6.86117I
u = 0.238444 0.753257I
9.78827 8.91254I 5.51225 + 6.86117I
u = 0.211452 + 0.753740I
10.14920 0.50010I 6.30668 0.52370I
u = 0.211452 0.753740I
10.14920 + 0.50010I 6.30668 + 0.52370I
u = 0.226339 + 0.743021I
6.22083 4.06637I 2.60237 + 3.83342I
u = 0.226339 0.743021I
6.22083 + 4.06637I 2.60237 3.83342I
u = 1.27909
2.59443 3.57300
u = 0.265421 + 0.637640I
1.64111 5.49885I 2.09355 + 9.09752I
u = 0.265421 0.637640I
1.64111 + 5.49885I 2.09355 9.09752I
u = 1.333120 + 0.238788I
1.11897 + 2.94236I 0
u = 1.333120 0.238788I
1.11897 2.94236I 0
u = 0.111488 + 0.635085I
3.42148 + 0.21799I 7.97736 + 0.39083I
u = 0.111488 0.635085I
3.42148 0.21799I 7.97736 0.39083I
u = 1.38005
2.50705 0
u = 0.244204 + 0.558196I
0.06888 + 1.57750I 1.83089 4.70926I
u = 0.244204 0.558196I
0.06888 1.57750I 1.83089 + 4.70926I
u = 1.390480 + 0.143509I
5.13647 0.61365I 0
u = 1.390480 0.143509I
5.13647 + 0.61365I 0
u = 1.389040 + 0.181909I
5.88050 3.43976I 0
u = 1.389040 0.181909I
5.88050 + 3.43976I 0
u = 1.388080 + 0.226393I
5.26596 4.49438I 0
u = 1.388080 0.226393I
5.26596 + 4.49438I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.38262 + 0.30594I
5.09640 3.33447I 0
u = 1.38262 0.30594I
5.09640 + 3.33447I 0
u = 1.41982 + 0.02499I
0.91602 + 4.40703I 0
u = 1.41982 0.02499I
0.91602 4.40703I 0
u = 1.39798 + 0.25008I
3.65546 + 8.74389I 0
u = 1.39798 0.25008I
3.65546 8.74389I 0
u = 1.39053 + 0.29925I
1.08580 + 7.84259I 0
u = 1.39053 0.29925I
1.08580 7.84259I 0
u = 1.39749 + 0.30388I
4.58845 12.74280I 0
u = 1.39749 0.30388I
4.58845 + 12.74280I 0
u = 0.474413 + 0.286577I
0.48387 + 2.27983I 1.28247 3.09777I
u = 0.474413 0.286577I
0.48387 2.27983I 1.28247 + 3.09777I
u = 0.303652 + 0.417609I
0.553397 + 1.129410I 4.11708 5.53577I
u = 0.303652 0.417609I
0.553397 1.129410I 4.11708 + 5.53577I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
44
+ u
43
+ ··· + u
2
+ 1
c
2
u
44
+ 25u
43
+ ··· + 2u + 1
c
3
, c
7
, c
8
u
44
u
43
+ ··· + 16u + 5
c
4
u
44
3u
43
+ ··· 8u + 3
c
5
, c
9
, c
10
u
44
+ u
43
+ ··· + u
2
+ 1
c
11
u
44
11u
43
+ ··· 12u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
44
+ 25y
43
+ ··· + 2y + 1
c
2
y
44
11y
43
+ ··· + 6y + 1
c
3
, c
7
, c
8
y
44
47y
43
+ ··· 726y + 25
c
4
y
44
+ 5y
43
+ ··· 70y + 9
c
5
, c
9
, c
10
y
44
39y
43
+ ··· + 2y + 1
c
11
y
44
+ y
43
+ ··· + 62y + 1
8