9
7
(K9a
26
)
A knot diagram
1
Linearized knot diagam
5 6 8 3 2 1 9 4 7
Solving Sequence
1,5
2 6 3 7 4 9 8
c
1
c
5
c
2
c
6
c
4
c
9
c
8
c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
14
u
13
5u
12
+ 4u
11
+ 10u
10
5u
9
7u
8
2u
7
4u
6
+ 8u
5
+ 8u
4
2u
3
2u
2
3u 1i
* 1 irreducible components of dim
C
= 0, with total 14 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
14
u
13
5u
12
+ 4u
11
+ 10u
10
5u
9
7u
8
2u
7
4u
6
+ 8u
5
+
8u
4
2u
3
2u
2
3u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
u
3
2u
u
3
+ u
a
4
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
9
=
u
6
3u
4
+ 2u
2
+ 1
u
6
+ 2u
4
u
2
a
8
=
u
9
4u
7
+ 5u
5
3u
u
9
+ 3u
7
3u
5
+ u
a
8
=
u
9
4u
7
+ 5u
5
3u
u
9
+ 3u
7
3u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
12
+ 20u
10
+ 4u
9
36u
8
16u
7
+ 12u
6
+ 20u
5
+ 36u
4
+ 4u
3
28u
2
20u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
14
u
13
+ ··· 3u 1
c
3
, c
8
u
14
u
13
+ ··· u 1
c
4
, c
6
, c
7
c
9
u
14
+ 3u
13
+ ··· + 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
14
11y
13
+ ··· 5y + 1
c
3
, c
8
y
14
3y
13
+ ··· 5y + 1
c
4
, c
6
, c
7
c
9
y
14
+ 17y
13
+ ··· y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.021800 + 0.901952I
9.65121 + 3.26499I 3.90686 2.49004I
u = 0.021800 0.901952I
9.65121 3.26499I 3.90686 + 2.49004I
u = 1.126450 + 0.176078I
1.41287 + 0.85224I 7.59802 0.38712I
u = 1.126450 0.176078I
1.41287 0.85224I 7.59802 + 0.38712I
u = 1.28972
5.55995 16.7050
u = 1.279790 + 0.223785I
2.97961 4.88256I 11.68599 + 6.44337I
u = 1.279790 0.223785I
2.97961 + 4.88256I 11.68599 6.44337I
u = 1.264560 + 0.437504I
5.80102 + 1.51934I 7.12222 0.64840I
u = 1.264560 0.437504I
5.80102 1.51934I 7.12222 + 0.64840I
u = 1.299190 + 0.426336I
5.53769 8.01486I 7.63204 + 5.37427I
u = 1.299190 0.426336I
5.53769 + 8.01486I 7.63204 5.37427I
u = 0.129663 + 0.583715I
1.35226 + 1.98638I 4.65592 5.08636I
u = 0.129663 0.583715I
1.35226 1.98638I 4.65592 + 5.08636I
u = 0.362713
0.730641 14.0930
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
14
u
13
+ ··· 3u 1
c
3
, c
8
u
14
u
13
+ ··· u 1
c
4
, c
6
, c
7
c
9
u
14
+ 3u
13
+ ··· + 5u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
14
11y
13
+ ··· 5y + 1
c
3
, c
8
y
14
3y
13
+ ··· 5y + 1
c
4
, c
6
, c
7
c
9
y
14
+ 17y
13
+ ··· y + 1
7