11a
182
(K11a
182
)
A knot diagram
1
Linearized knot diagam
7 1 11 9 10 2 3 4 5 6 8
Solving Sequence
5,9
10 6 11 4 3 8 1 2 7
c
9
c
5
c
10
c
4
c
3
c
8
c
11
c
2
c
7
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
36
u
35
+ ··· + u
2
1i
* 1 irreducible components of dim
C
= 0, with total 36 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
36
u
35
+ · · · + u
2
1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
4
2u
2
a
4
=
u
u
a
3
=
u
7
4u
5
+ 4u
3
2u
u
9
+ 5u
7
7u
5
+ 2u
3
+ u
a
8
=
u
2
+ 1
u
2
a
1
=
u
8
+ 5u
6
7u
4
+ 2u
2
+ 1
u
8
4u
6
+ 4u
4
2u
2
a
2
=
u
25
+ 16u
23
+ ··· + 6u
3
u
u
25
15u
23
+ ··· 3u
5
+ u
a
7
=
u
18
+ 11u
16
48u
14
+ 107u
12
133u
10
+ 95u
8
34u
6
+ 2u
4
+ u
2
+ 1
u
20
12u
18
+ 58u
16
144u
14
+ 193u
12
130u
10
+ 26u
8
+ 14u
6
5u
4
a
7
=
u
18
+ 11u
16
48u
14
+ 107u
12
133u
10
+ 95u
8
34u
6
+ 2u
4
+ u
2
+ 1
u
20
12u
18
+ 58u
16
144u
14
+ 193u
12
130u
10
+ 26u
8
+ 14u
6
5u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4u
32
+84u
30
780u
28
+4u
27
+4216u
26
72u
25
14700u
24
+560u
23
+34636u
22
2464u
21
56164u
20
+6748u
19
+62536u
18
11928u
17
46600u
16
+13636u
15
+21736u
14
9752u
13
5352u
12
+ 3984u
11
+ 364u
10
800u
9
32u
8
+ 168u
7
+ 60u
6
116u
5
+ 28u
3
4u
2
4u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
36
+ u
35
+ ··· + u
2
1
c
2
u
36
+ 17u
35
+ ··· 2u + 1
c
3
u
36
+ 5u
35
+ ··· + 38u + 5
c
4
, c
5
, c
8
c
9
, c
10
u
36
+ u
35
+ ··· + u
2
1
c
7
u
36
u
35
+ ··· + 34u 13
c
11
u
36
+ 5u
35
+ ··· 38u 39
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
36
+ 17y
35
+ ··· 2y + 1
c
2
y
36
+ 5y
35
+ ··· 6y + 1
c
3
y
36
7y
35
+ ··· 1434y + 25
c
4
, c
5
, c
8
c
9
, c
10
y
36
47y
35
+ ··· 2y + 1
c
7
y
36
7y
35
+ ··· 3314y + 169
c
11
y
36
+ 13y
35
+ ··· + 16730y + 1521
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.923130 + 0.285145I
0.30787 2.25346I 5.12843 + 3.26342I
u = 0.923130 0.285145I
0.30787 + 2.25346I 5.12843 3.26342I
u = 0.995096 + 0.286789I
4.18097 + 4.67479I 11.82536 4.59597I
u = 0.995096 0.286789I
4.18097 4.67479I 11.82536 + 4.59597I
u = 1.024000 + 0.199158I
5.17530 + 2.55443I 13.5240 4.2251I
u = 1.024000 0.199158I
5.17530 2.55443I 13.5240 + 4.2251I
u = 0.994663 + 0.317611I
2.00397 9.65728I 8.40249 + 8.58483I
u = 0.994663 0.317611I
2.00397 + 9.65728I 8.40249 8.58483I
u = 1.049710 + 0.138664I
3.94362 + 2.17455I 11.37017 2.11968I
u = 1.049710 0.138664I
3.94362 2.17455I 11.37017 + 2.11968I
u = 0.674179 + 0.268506I
1.71251 + 3.16112I 3.99113 5.83038I
u = 0.674179 0.268506I
1.71251 3.16112I 3.99113 + 5.83038I
u = 0.691311
1.07542 9.42760
u = 0.472191 + 0.368747I
0.77973 3.66810I 5.58740 + 1.24735I
u = 0.472191 0.368747I
0.77973 + 3.66810I 5.58740 1.24735I
u = 0.201428 + 0.536486I
1.68498 + 6.75016I 2.91272 7.90487I
u = 0.201428 0.536486I
1.68498 6.75016I 2.91272 + 7.90487I
u = 0.210047 + 0.484113I
0.46489 2.03480I 6.34842 + 4.41097I
u = 0.210047 0.484113I
0.46489 + 2.03480I 6.34842 4.41097I
u = 0.100349 + 0.504234I
3.42760 0.43485I 1.35617 0.72368I
u = 0.100349 0.504234I
3.42760 + 0.43485I 1.35617 + 0.72368I
u = 0.332629 + 0.351120I
1.029420 0.669064I 9.01560 + 4.71804I
u = 0.332629 0.351120I
1.029420 + 0.669064I 9.01560 4.71804I
u = 1.64665 + 0.02163I
6.41597 3.89056I 0
u = 1.64665 0.02163I
6.41597 + 3.89056I 0
u = 1.66590
9.58969 0
u = 1.70003 + 0.06962I
8.97882 + 3.61851I 0
u = 1.70003 0.06962I
8.97882 3.61851I 0
u = 1.71726 + 0.08303I
11.6119 + 11.2693I 0
u = 1.71726 0.08303I
11.6119 11.2693I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.71795 + 0.07461I
13.8143 6.1298I 0
u = 1.71795 0.07461I
13.8143 + 6.1298I 0
u = 1.72470 + 0.05141I
14.9875 3.5755I 0
u = 1.72470 0.05141I
14.9875 + 3.5755I 0
u = 1.72765 + 0.03757I
13.86510 1.43953I 0
u = 1.72765 0.03757I
13.86510 + 1.43953I 0
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
36
+ u
35
+ ··· + u
2
1
c
2
u
36
+ 17u
35
+ ··· 2u + 1
c
3
u
36
+ 5u
35
+ ··· + 38u + 5
c
4
, c
5
, c
8
c
9
, c
10
u
36
+ u
35
+ ··· + u
2
1
c
7
u
36
u
35
+ ··· + 34u 13
c
11
u
36
+ 5u
35
+ ··· 38u 39
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
36
+ 17y
35
+ ··· 2y + 1
c
2
y
36
+ 5y
35
+ ··· 6y + 1
c
3
y
36
7y
35
+ ··· 1434y + 25
c
4
, c
5
, c
8
c
9
, c
10
y
36
47y
35
+ ··· 2y + 1
c
7
y
36
7y
35
+ ··· 3314y + 169
c
11
y
36
+ 13y
35
+ ··· + 16730y + 1521
8