11a
184
(K11a
184
)
A knot diagram
1
Linearized knot diagam
7 1 11 9 10 2 3 4 5 8 6
Solving Sequence
1,7
2 3 8 6 11 4 9 10 5
c
1
c
2
c
7
c
6
c
11
c
3
c
8
c
10
c
5
c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
43
u
42
+ ··· u
2
+ 1i
* 1 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
43
u
42
+ · · · u
2
+ 1i
(i) Arc colorings
a
1
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
8
=
u
5
2u
3
u
u
5
+ u
3
+ u
a
6
=
u
u
3
+ u
a
11
=
u
4
+ u
2
+ 1
u
6
2u
4
u
2
a
4
=
u
12
3u
10
5u
8
4u
6
2u
4
+ u
2
+ 1
u
14
+ 4u
12
+ 7u
10
+ 6u
8
+ 2u
6
u
2
a
9
=
u
31
8u
29
+ ··· 12u
7
4u
5
u
33
+ 9u
31
+ ··· + 4u
7
+ u
a
10
=
u
16
+ 5u
14
+ 11u
12
+ 12u
10
+ 5u
8
2u
6
2u
4
+ 1
u
16
4u
14
8u
12
8u
10
4u
8
a
5
=
u
35
10u
33
+ ··· u
3
2u
u
35
+ 9u
33
+ ··· + u
3
+ u
a
5
=
u
35
10u
33
+ ··· u
3
2u
u
35
+ 9u
33
+ ··· + u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
41
+4u
40
44u
39
+44u
38
236u
37
+240u
36
796u
35
+832u
34
1848u
33
+2004u
32
3040u
31
+3444u
30
3480u
29
+4132u
28
2468u
27
+3044u
26
428u
25
+452u
24
+1264u
23
1860u
22
+ 1600u
21
2240u
20
+ 824u
19
920u
18
84u
17
+ 456u
16
464u
15
+ 772u
14
336u
13
+332u
12
72u
11
72u
10
+76u
9
136u
8
+68u
7
44u
6
+16u
5
+8u
4
8u
3
+8u
2
4u+2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
43
+ u
42
+ ··· + u
2
1
c
2
u
43
+ 23u
42
+ ··· + 2u 1
c
3
u
43
5u
42
+ ··· 2u + 5
c
4
, c
5
, c
8
c
9
u
43
+ u
42
+ ··· + u
2
1
c
7
, c
11
u
43
u
42
+ ··· 5u 2
c
10
u
43
+ 11u
42
+ ··· + 12u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
43
+ 23y
42
+ ··· + 2y 1
c
2
y
43
5y
42
+ ··· + 14y 1
c
3
y
43
+ 7y
42
+ ··· 926y 25
c
4
, c
5
, c
8
c
9
y
43
49y
42
+ ··· + 2y 1
c
7
, c
11
y
43
33y
42
+ ··· + 125y 4
c
10
y
43
y
42
+ ··· 18y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.521315 + 0.837611I
1.91297 + 4.88049I 7.17506 8.80545I
u = 0.521315 0.837611I
1.91297 4.88049I 7.17506 + 8.80545I
u = 0.564675 + 0.846085I
9.73939 6.81501I 9.15243 + 6.58080I
u = 0.564675 0.846085I
9.73939 + 6.81501I 9.15243 6.58080I
u = 0.070971 + 0.949282I
1.88710 1.49301I 2.49179 + 5.12316I
u = 0.070971 0.949282I
1.88710 + 1.49301I 2.49179 5.12316I
u = 0.157033 + 1.039100I
4.88985 + 3.07247I 2.04876 3.22790I
u = 0.157033 1.039100I
4.88985 3.07247I 2.04876 + 3.22790I
u = 0.443218 + 0.795583I
0.18390 1.87415I 2.36398 + 3.86442I
u = 0.443218 0.795583I
0.18390 + 1.87415I 2.36398 3.86442I
u = 0.578652 + 0.674431I
10.22700 + 2.27386I 10.59990 + 0.05953I
u = 0.578652 0.674431I
10.22700 2.27386I 10.59990 0.05953I
u = 0.509969 + 0.679497I
2.36364 0.64965I 9.29098 + 1.48220I
u = 0.509969 0.679497I
2.36364 + 0.64965I 9.29098 1.48220I
u = 0.802703 + 0.162351I
6.46390 7.57490I 7.29481 + 4.51486I
u = 0.802703 0.162351I
6.46390 + 7.57490I 7.29481 4.51486I
u = 0.783539 + 0.138077I
1.13687 + 5.20298I 4.40416 6.22689I
u = 0.783539 0.138077I
1.13687 5.20298I 4.40416 + 6.22689I
u = 0.495820 + 1.104130I
6.52652 + 3.46599I 6.43711 3.77434I
u = 0.495820 1.104130I
6.52652 3.46599I 6.43711 + 3.77434I
u = 0.781151
2.55363 4.52390
u = 0.758021 + 0.099035I
2.34232 1.57976I 0.847135 + 0.282398I
u = 0.758021 0.099035I
2.34232 + 1.57976I 0.847135 0.282398I
u = 0.463782 + 1.145440I
1.69075 3.98657I 4.72929 + 3.11894I
u = 0.463782 1.145440I
1.69075 + 3.98657I 4.72929 3.11894I
u = 0.382526 + 1.197980I
5.08887 + 1.28085I 0. 2.90376I
u = 0.382526 1.197980I
5.08887 1.28085I 0. + 2.90376I
u = 0.362492 + 1.206110I
2.33692 3.70518I 2.48681 + 1.54084I
u = 0.362492 1.206110I
2.33692 + 3.70518I 2.48681 1.54084I
u = 0.407336 + 1.191840I
6.07657 + 2.44102I 3.16979 3.57779I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.407336 1.191840I
6.07657 2.44102I 3.16979 + 3.57779I
u = 0.448865 + 1.200600I
0.96199 4.39851I 0. + 3.54146I
u = 0.448865 1.200600I
0.96199 + 4.39851I 0. 3.54146I
u = 0.490454 + 1.184460I
5.48574 + 6.18515I 2.04828 3.59368I
u = 0.490454 1.184460I
5.48574 6.18515I 2.04828 + 3.59368I
u = 0.645564 + 0.300310I
8.84662 + 0.96374I 10.02944 0.37589I
u = 0.645564 0.300310I
8.84662 0.96374I 10.02944 + 0.37589I
u = 0.507296 + 1.186730I
4.20932 9.96665I 0. + 9.16746I
u = 0.507296 1.186730I
4.20932 + 9.96665I 0. 9.16746I
u = 0.519799 + 1.187960I
3.43954 + 12.44990I 4.17518 7.63100I
u = 0.519799 1.187960I
3.43954 12.44990I 4.17518 + 7.63100I
u = 0.536405 + 0.171930I
1.103730 0.098765I 9.44099 + 0.91027I
u = 0.536405 0.171930I
1.103730 + 0.098765I 9.44099 0.91027I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
43
+ u
42
+ ··· + u
2
1
c
2
u
43
+ 23u
42
+ ··· + 2u 1
c
3
u
43
5u
42
+ ··· 2u + 5
c
4
, c
5
, c
8
c
9
u
43
+ u
42
+ ··· + u
2
1
c
7
, c
11
u
43
u
42
+ ··· 5u 2
c
10
u
43
+ 11u
42
+ ··· + 12u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
43
+ 23y
42
+ ··· + 2y 1
c
2
y
43
5y
42
+ ··· + 14y 1
c
3
y
43
+ 7y
42
+ ··· 926y 25
c
4
, c
5
, c
8
c
9
y
43
49y
42
+ ··· + 2y 1
c
7
, c
11
y
43
33y
42
+ ··· + 125y 4
c
10
y
43
y
42
+ ··· 18y 1
8