11a
185
(K11a
185
)
A knot diagram
1
Linearized knot diagam
7 1 11 10 9 2 3 4 5 8 6
Solving Sequence
2,6
7 1 3 8 11 4 9 5 10
c
6
c
1
c
2
c
7
c
11
c
3
c
8
c
5
c
10
c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
54
+ u
53
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
54
+ u
53
+ · · · + u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
8
=
u
6
u
4
+ 1
u
8
+ 2u
6
+ 2u
4
a
11
=
u
3
u
3
+ u
a
4
=
u
11
2u
9
2u
7
u
3
u
11
3u
9
4u
7
u
5
+ u
3
+ u
a
9
=
u
30
+ 7u
28
+ ··· 2u
12
+ 1
u
30
+ 8u
28
+ ··· + 4u
6
u
2
a
5
=
u
47
12u
45
+ ··· 20u
9
8u
7
u
49
+ 13u
47
+ ··· 2u
5
+ u
a
10
=
u
17
4u
15
7u
13
4u
11
+ 3u
9
+ 6u
7
+ 2u
5
u
u
19
+ 5u
17
+ 12u
15
+ 15u
13
+ 9u
11
u
9
4u
7
2u
5
+ u
3
+ u
a
10
=
u
17
4u
15
7u
13
4u
11
+ 3u
9
+ 6u
7
+ 2u
5
u
u
19
+ 5u
17
+ 12u
15
+ 15u
13
+ 9u
11
u
9
4u
7
2u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
52
4u
51
+ ··· + 4u
2
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
54
+ u
53
+ ··· + u + 1
c
2
u
54
+ 29u
53
+ ··· u + 1
c
3
u
54
7u
53
+ ··· 47u + 5
c
4
, c
5
, c
9
u
54
u
53
+ ··· u + 1
c
7
, c
11
u
54
u
53
+ ··· + u + 1
c
8
u
54
+ u
53
+ ··· + 11u + 1
c
10
u
54
+ 11u
53
+ ··· + 1951u + 187
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
54
+ 29y
53
+ ··· y + 1
c
2
y
54
7y
53
+ ··· 5y + 1
c
3
y
54
3y
53
+ ··· + 631y + 25
c
4
, c
5
, c
9
y
54
+ 49y
53
+ ··· y + 1
c
7
, c
11
y
54
43y
53
+ ··· 97y + 1
c
8
y
54
+ 5y
53
+ ··· 49y + 1
c
10
y
54
+ 21y
53
+ ··· + 184179y + 34969
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.526458 + 0.850149I
1.84506 5.20730I 6.07211 + 8.44255I
u = 0.526458 0.850149I
1.84506 + 5.20730I 6.07211 8.44255I
u = 0.063963 + 0.969473I
2.01199 + 1.57241I 2.93647 4.70910I
u = 0.063963 0.969473I
2.01199 1.57241I 2.93647 + 4.70910I
u = 0.542026 + 0.876210I
3.38874 + 8.60756I 0.88746 8.62489I
u = 0.542026 0.876210I
3.38874 8.60756I 0.88746 + 8.62489I
u = 0.068795 + 1.043570I
7.55344 4.33327I 6.71453 + 3.78697I
u = 0.068795 1.043570I
7.55344 + 4.33327I 6.71453 3.78697I
u = 0.404606 + 0.965250I
5.19453 0.85164I 2.69916 + 2.79194I
u = 0.404606 0.965250I
5.19453 + 0.85164I 2.69916 2.79194I
u = 0.459955 + 0.798537I
0.23556 + 1.92632I 2.54464 3.58852I
u = 0.459955 0.798537I
0.23556 1.92632I 2.54464 + 3.58852I
u = 0.514528 + 0.758613I
0.15792 + 2.10554I 4.75076 4.16265I
u = 0.514528 0.758613I
0.15792 2.10554I 4.75076 + 4.16265I
u = 0.521169 + 0.661679I
2.37968 + 0.93113I 8.32580 1.37232I
u = 0.521169 0.661679I
2.37968 0.93113I 8.32580 + 1.37232I
u = 0.555404 + 0.618983I
2.66786 4.19841I 2.85328 + 2.26313I
u = 0.555404 0.618983I
2.66786 + 4.19841I 2.85328 2.26313I
u = 0.812471 + 0.137850I
6.92259 + 9.00910I 0.82614 5.72677I
u = 0.812471 0.137850I
6.92259 9.00910I 0.82614 + 5.72677I
u = 0.409939 + 1.110810I
5.37080 0.77260I 0
u = 0.409939 1.110810I
5.37080 + 0.77260I 0
u = 0.803336 + 0.074667I
8.69949 + 0.21899I 3.12382 0.07866I
u = 0.803336 0.074667I
8.69949 0.21899I 3.12382 + 0.07866I
u = 0.793006 + 0.135744I
1.35714 5.52569I 3.45218 + 5.82582I
u = 0.793006 0.135744I
1.35714 + 5.52569I 3.45218 5.82582I
u = 0.465718 + 1.132140I
1.40488 + 3.87836I 0
u = 0.465718 1.132140I
1.40488 3.87836I 0
u = 0.768273 + 0.105402I
2.42732 + 1.73641I 0.699777 + 0.008860I
u = 0.768273 0.105402I
2.42732 1.73641I 0.699777 0.008860I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.492150 + 1.152340I
4.72150 7.14315I 0
u = 0.492150 1.152340I
4.72150 + 7.14315I 0
u = 0.403427 + 1.196670I
6.22025 2.29095I 0
u = 0.403427 1.196670I
6.22025 + 2.29095I 0
u = 0.382721 + 1.204180I
5.34368 1.56137I 0
u = 0.382721 1.204180I
5.34368 + 1.56137I 0
u = 0.378306 + 1.216650I
11.00630 + 4.98743I 0
u = 0.378306 1.216650I
11.00630 4.98743I 0
u = 0.415619 + 1.215680I
12.53210 + 4.46314I 0
u = 0.415619 1.215680I
12.53210 4.46314I 0
u = 0.494467 + 1.187320I
5.57287 6.38943I 0
u = 0.494467 1.187320I
5.57287 + 6.38943I 0
u = 0.688011 + 0.172752I
1.90661 + 2.65629I 2.99397 3.57576I
u = 0.688011 0.172752I
1.90661 2.65629I 2.99397 + 3.57576I
u = 0.508429 + 1.190650I
4.45647 + 10.31740I 0
u = 0.508429 1.190650I
4.45647 10.31740I 0
u = 0.486868 + 1.204310I
12.02490 + 4.47153I 0
u = 0.486868 1.204310I
12.02490 4.47153I 0
u = 0.513281 + 1.197090I
10.0524 13.8722I 0
u = 0.513281 1.197090I
10.0524 + 13.8722I 0
u = 0.553091 + 0.375407I
3.44062 3.02821I 2.33743 + 2.90410I
u = 0.553091 0.375407I
3.44062 + 3.02821I 2.33743 2.90410I
u = 0.542871 + 0.222612I
1.223040 + 0.207996I 8.65252 1.10768I
u = 0.542871 0.222612I
1.223040 0.207996I 8.65252 + 1.10768I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
54
+ u
53
+ ··· + u + 1
c
2
u
54
+ 29u
53
+ ··· u + 1
c
3
u
54
7u
53
+ ··· 47u + 5
c
4
, c
5
, c
9
u
54
u
53
+ ··· u + 1
c
7
, c
11
u
54
u
53
+ ··· + u + 1
c
8
u
54
+ u
53
+ ··· + 11u + 1
c
10
u
54
+ 11u
53
+ ··· + 1951u + 187
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
54
+ 29y
53
+ ··· y + 1
c
2
y
54
7y
53
+ ··· 5y + 1
c
3
y
54
3y
53
+ ··· + 631y + 25
c
4
, c
5
, c
9
y
54
+ 49y
53
+ ··· y + 1
c
7
, c
11
y
54
43y
53
+ ··· 97y + 1
c
8
y
54
+ 5y
53
+ ··· 49y + 1
c
10
y
54
+ 21y
53
+ ··· + 184179y + 34969
8