11a
188
(K11a
188
)
A knot diagram
1
Linearized knot diagam
7 1 8 11 10 2 3 4 6 5 9
Solving Sequence
6,10
5 11 4 9 1 8 3 2 7
c
5
c
10
c
4
c
9
c
11
c
8
c
3
c
2
c
7
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
33
+ u
32
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
33
+ u
32
+ · · · u 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
u
a
1
=
u
5
2u
3
+ u
u
5
+ 3u
3
+ u
a
8
=
u
7
+ 4u
5
+ 4u
3
u
9
+ 5u
7
+ 7u
5
+ 2u
3
+ u
a
3
=
u
12
7u
10
17u
8
16u
6
4u
4
+ u
2
+ 1
u
14
8u
12
23u
10
28u
8
14u
6
4u
4
+ u
2
a
2
=
u
24
13u
22
+ ··· 5u
4
+ 1
u
24
+ 14u
22
+ ··· 30u
6
10u
4
a
7
=
u
17
10u
15
39u
13
74u
11
69u
9
26u
7
+ 4u
5
+ 8u
3
+ u
u
19
11u
17
+ ··· + 3u
3
+ u
a
7
=
u
17
10u
15
39u
13
74u
11
69u
9
26u
7
+ 4u
5
+ 8u
3
+ u
u
19
11u
17
+ ··· + 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
32
4u
31
80u
30
76u
29
704u
28
632u
27
3580u
26
3016u
25
11624u
24
9108u
23
25160u
22
18136u
21
36848u
20
24152u
19
36272u
18
21456u
17
22940u
16
12348u
15
7568u
14
3960u
13
+ 668u
12
108u
11
+
1756u
10
+ 388u
9
+ 672u
8
+ 200u
7
+ 28u
6
+ 44u
5
28u
4
+ 32u
3
8u
2
+ 12u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
33
+ u
32
+ ··· + u + 1
c
2
u
33
+ 19u
32
+ ··· 3u 1
c
3
, c
7
, c
8
u
33
u
32
+ ··· + u + 5
c
4
, c
5
, c
9
c
10
u
33
u
32
+ ··· u + 1
c
11
u
33
11u
32
+ ··· + 825u 187
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
33
+ 19y
32
+ ··· 3y 1
c
2
y
33
9y
32
+ ··· 15y 1
c
3
, c
7
, c
8
y
33
37y
32
+ ··· + 281y 25
c
4
, c
5
, c
9
c
10
y
33
+ 39y
32
+ ··· 3y 1
c
11
y
33
21y
32
+ ··· + 34353y 34969
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.432708 + 0.835688I
10.12330 + 1.05032I 7.28000 + 0.76825I
u = 0.432708 0.835688I
10.12330 1.05032I 7.28000 0.76825I
u = 0.467680 + 0.807931I
9.85167 8.36620I 6.60862 + 7.12105I
u = 0.467680 0.807931I
9.85167 + 8.36620I 6.60862 7.12105I
u = 0.441389 + 0.806737I
6.24327 + 3.55068I 3.65965 4.08940I
u = 0.441389 0.806737I
6.24327 3.55068I 3.65965 + 4.08940I
u = 0.410896 + 0.632341I
1.74331 + 5.24520I 3.08967 9.50750I
u = 0.410896 0.632341I
1.74331 5.24520I 3.08967 + 9.50750I
u = 0.189812 + 0.728281I
3.26709 0.39865I 8.78755 0.39915I
u = 0.189812 0.728281I
3.26709 + 0.39865I 8.78755 + 0.39915I
u = 0.643564 + 0.026463I
7.51632 + 4.64153I 2.88542 3.11188I
u = 0.643564 0.026463I
7.51632 4.64153I 2.88542 + 3.11188I
u = 0.333302 + 0.543113I
0.01425 1.43543I 1.18967 + 5.27444I
u = 0.333302 0.543113I
0.01425 + 1.43543I 1.18967 5.27444I
u = 0.620531
3.83643 0.489420
u = 0.347286 + 0.367281I
0.489336 1.105190I 3.80448 + 5.83190I
u = 0.347286 0.367281I
0.489336 + 1.105190I 3.80448 5.83190I
u = 0.445942 + 0.189934I
0.50516 2.21066I 1.15388 + 3.33162I
u = 0.445942 0.189934I
0.50516 + 2.21066I 1.15388 3.33162I
u = 0.02425 + 1.52826I
5.83685 2.02148I 0
u = 0.02425 1.52826I
5.83685 + 2.02148I 0
u = 0.07256 + 1.57034I
7.21966 2.79655I 0
u = 0.07256 1.57034I
7.21966 + 2.79655I 0
u = 0.10256 + 1.58115I
9.24914 + 7.07591I 0
u = 0.10256 1.58115I
9.24914 7.07591I 0
u = 0.04854 + 1.61236I
11.31290 + 0.47869I 0
u = 0.04854 1.61236I
11.31290 0.47869I 0
u = 0.12471 + 1.64061I
14.6375 + 5.7063I 0
u = 0.12471 1.64061I
14.6375 5.7063I 0
u = 0.13328 + 1.64240I
18.2479 10.6589I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.13328 1.64240I
18.2479 + 10.6589I 0
u = 0.11947 + 1.64926I
18.6687 1.0564I 0
u = 0.11947 1.64926I
18.6687 + 1.0564I 0
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
33
+ u
32
+ ··· + u + 1
c
2
u
33
+ 19u
32
+ ··· 3u 1
c
3
, c
7
, c
8
u
33
u
32
+ ··· + u + 5
c
4
, c
5
, c
9
c
10
u
33
u
32
+ ··· u + 1
c
11
u
33
11u
32
+ ··· + 825u 187
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
33
+ 19y
32
+ ··· 3y 1
c
2
y
33
9y
32
+ ··· 15y 1
c
3
, c
7
, c
8
y
33
37y
32
+ ··· + 281y 25
c
4
, c
5
, c
9
c
10
y
33
+ 39y
32
+ ··· 3y 1
c
11
y
33
21y
32
+ ··· + 34353y 34969
8