11a
189
(K11a
189
)
A knot diagram
1
Linearized knot diagam
7 1 10 11 9 2 3 4 6 8 5
Solving Sequence
4,11 5,8
9 6 1 10 3 2 7
c
4
c
8
c
5
c
11
c
10
c
3
c
2
c
7
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h6.42009 × 10
257
u
88
4.87876 × 10
257
u
87
+ ··· + 2.36068 × 10
257
b + 8.83509 × 10
259
,
6.20222 × 10
258
u
88
+ 4.18516 × 10
258
u
87
+ ··· + 3.09249 × 10
259
a + 2.68994 × 10
260
,
u
89
30u
87
+ ··· 598u + 131i
I
u
2
= h−u
14
+ u
13
+ 5u
12
4u
11
12u
10
+ 9u
9
+ 17u
8
15u
7
14u
6
+ 12u
5
+ 6u
4
7u
3
u
2
+ b,
7u
14
+ 6u
13
+ ··· + a + 7,
u
15
u
14
6u
13
+ 5u
12
+ 17u
11
13u
10
29u
9
+ 24u
8
+ 31u
7
27u
6
20u
5
+ 19u
4
+ 7u
3
7u
2
u + 1i
* 2 irreducible components of dim
C
= 0, with total 104 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h6.42 × 10
257
u
88
4.88 × 10
257
u
87
+ · · · + 2.36 × 10
257
b + 8.84 ×
10
259
, 6.20 × 10
258
u
88
+ 4.19 × 10
258
u
87
+ · · · + 3.09 × 10
259
a + 2.69 ×
10
260
, u
89
30u
87
+ · · · 598u + 131i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
8
=
0.200557u
88
0.135333u
87
+ ··· + 189.917u 8.69828
2.71959u
88
+ 2.06667u
87
+ ··· + 2244.10u 374.260
a
9
=
2.92015u
88
+ 1.93134u
87
+ ··· + 2434.01u 382.958
2.71959u
88
+ 2.06667u
87
+ ··· + 2244.10u 374.260
a
6
=
2.84782u
88
2.54786u
87
+ ··· 2839.07u + 510.136
0.594470u
88
0.409964u
87
+ ··· 776.183u + 135.349
a
1
=
u
u
3
+ u
a
10
=
3.69459u
88
+ 2.73242u
87
+ ··· + 2749.91u 445.177
0.851550u
88
+ 0.449332u
87
+ ··· + 777.942u 121.621
a
3
=
1.70941u
88
+ 1.84202u
87
+ ··· + 1720.23u 327.215
0.0173264u
88
+ 0.0106093u
87
+ ··· + 245.379u 48.9621
a
2
=
1.77307u
88
+ 1.96142u
87
+ ··· + 1963.93u 375.540
0.0672428u
88
0.0641570u
87
+ ··· + 81.4241u 16.2786
a
7
=
0.967025u
88
+ 1.19947u
87
+ ··· + 1231.97u 237.907
0.376658u
88
+ 0.389535u
87
+ ··· + 428.290u 81.3056
a
7
=
0.967025u
88
+ 1.19947u
87
+ ··· + 1231.97u 237.907
0.376658u
88
+ 0.389535u
87
+ ··· + 428.290u 81.3056
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.125878u
88
0.576729u
87
+ ··· 1166.86u + 242.988
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
89
+ u
88
+ ··· + u + 1
c
2
u
89
+ 45u
88
+ ··· 7u 1
c
3
u
89
3u
88
+ ··· + 27u + 1
c
4
, c
11
u
89
30u
87
+ ··· 598u + 131
c
5
, c
9
u
89
27u
87
+ ··· + 2u 1
c
7
u
89
u
88
+ ··· 219u + 3737
c
8
u
89
+ u
88
+ ··· 11u + 3
c
10
u
89
11u
88
+ ··· + 2752u 593
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
89
+ 45y
88
+ ··· 7y 1
c
2
y
89
+ y
88
+ ··· 39y 1
c
3
y
89
+ 3y
88
+ ··· + 143y 1
c
4
, c
11
y
89
60y
88
+ ··· + 397166y 17161
c
5
, c
9
y
89
54y
88
+ ··· + 32y 1
c
7
y
89
43y
88
+ ··· 186682455y 13965169
c
8
y
89
+ 5y
88
+ ··· + 181y 9
c
10
y
89
27y
88
+ ··· + 8974170y 351649
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.889747 + 0.452384I
a = 0.53880 + 1.76232I
b = 0.477239 + 0.302395I
0.63006 + 8.68382I 0
u = 0.889747 0.452384I
a = 0.53880 1.76232I
b = 0.477239 0.302395I
0.63006 8.68382I 0
u = 0.910671 + 0.398320I
a = 0.19557 + 1.62064I
b = 0.403492 + 0.311347I
1.47236 3.97526I 0
u = 0.910671 0.398320I
a = 0.19557 1.62064I
b = 0.403492 0.311347I
1.47236 + 3.97526I 0
u = 1.016600 + 0.137245I
a = 0.576279 0.124219I
b = 1.28500 1.71908I
0.83265 + 2.51437I 0
u = 1.016600 0.137245I
a = 0.576279 + 0.124219I
b = 1.28500 + 1.71908I
0.83265 2.51437I 0
u = 0.954288 + 0.091707I
a = 1.90084 + 0.00472I
b = 1.231680 + 0.032158I
0.74745 + 3.52422I 0
u = 0.954288 0.091707I
a = 1.90084 0.00472I
b = 1.231680 0.032158I
0.74745 3.52422I 0
u = 0.912318 + 0.259542I
a = 0.65851 + 1.37947I
b = 0.259979 + 0.234024I
2.10633 2.24661I 0
u = 0.912318 0.259542I
a = 0.65851 1.37947I
b = 0.259979 0.234024I
2.10633 + 2.24661I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.250513 + 0.909541I
a = 0.558779 + 0.800837I
b = 1.012260 0.599113I
5.28492 + 4.09985I 0
u = 0.250513 0.909541I
a = 0.558779 0.800837I
b = 1.012260 + 0.599113I
5.28492 4.09985I 0
u = 1.061570 + 0.193566I
a = 0.646957 + 0.005889I
b = 1.34806 1.48412I
3.38961 8.10177I 0
u = 1.061570 0.193566I
a = 0.646957 0.005889I
b = 1.34806 + 1.48412I
3.38961 + 8.10177I 0
u = 0.896503 + 0.169355I
a = 1.19590 + 1.09495I
b = 0.204472 + 0.156620I
0.70886 2.35289I 0
u = 0.896503 0.169355I
a = 1.19590 1.09495I
b = 0.204472 0.156620I
0.70886 + 2.35289I 0
u = 1.096800 + 0.024032I
a = 0.843907 0.225610I
b = 0.97444 1.43273I
6.30667 + 0.58881I 0
u = 1.096800 0.024032I
a = 0.843907 + 0.225610I
b = 0.97444 + 1.43273I
6.30667 0.58881I 0
u = 0.593963 + 0.659935I
a = 0.857622 + 0.233636I
b = 0.639884 0.077817I
0.74312 + 2.38513I 0
u = 0.593963 0.659935I
a = 0.857622 0.233636I
b = 0.639884 + 0.077817I
0.74312 2.38513I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.018630 + 0.485863I
a = 0.760663 + 0.983882I
b = 0.506841 + 0.529809I
2.24793 + 1.87180I 0
u = 1.018630 0.485863I
a = 0.760663 0.983882I
b = 0.506841 0.529809I
2.24793 1.87180I 0
u = 0.398710 + 0.771706I
a = 1.354100 0.383086I
b = 0.449816 + 0.871067I
2.27469 6.43119I 0
u = 0.398710 0.771706I
a = 1.354100 + 0.383086I
b = 0.449816 0.871067I
2.27469 + 6.43119I 0
u = 0.651535 + 0.565177I
a = 1.57091 + 0.04849I
b = 1.016120 + 0.181206I
0.03725 4.55071I 0
u = 0.651535 0.565177I
a = 1.57091 0.04849I
b = 1.016120 0.181206I
0.03725 + 4.55071I 0
u = 1.080740 + 0.451595I
a = 1.089600 + 0.543941I
b = 0.652720 + 0.801813I
1.82833 5.02044I 0
u = 1.080740 0.451595I
a = 1.089600 0.543941I
b = 0.652720 0.801813I
1.82833 + 5.02044I 0
u = 0.825079 + 0.852973I
a = 1.013710 0.231765I
b = 0.404411 + 0.990807I
2.85121 + 0.37716I 0
u = 0.825079 0.852973I
a = 1.013710 + 0.231765I
b = 0.404411 0.990807I
2.85121 0.37716I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.799407 + 0.019558I
a = 0.815403 0.950050I
b = 0.20638 1.47781I
0.082135 1.402700I 1.000000 + 0.911438I
u = 0.799407 0.019558I
a = 0.815403 + 0.950050I
b = 0.20638 + 1.47781I
0.082135 + 1.402700I 1.000000 0.911438I
u = 0.127992 + 1.209710I
a = 0.551795 + 0.738924I
b = 0.807284 0.641410I
2.99214 + 5.76178I 0
u = 0.127992 1.209710I
a = 0.551795 0.738924I
b = 0.807284 + 0.641410I
2.99214 5.76178I 0
u = 0.758651 + 0.141414I
a = 1.92316 + 0.06017I
b = 1.166660 + 0.036708I
2.87128 + 0.16130I 2.26530 + 3.31981I
u = 0.758651 0.141414I
a = 1.92316 0.06017I
b = 1.166660 0.036708I
2.87128 0.16130I 2.26530 3.31981I
u = 0.049165 + 1.230130I
a = 0.559202 + 0.688042I
b = 0.736512 0.561358I
1.33196 2.44177I 0
u = 0.049165 1.230130I
a = 0.559202 0.688042I
b = 0.736512 + 0.561358I
1.33196 + 2.44177I 0
u = 0.305027 + 0.698562I
a = 0.476739 + 0.863083I
b = 1.162640 0.546817I
4.93245 + 0.64307I 7.39513 2.13919I
u = 0.305027 0.698562I
a = 0.476739 0.863083I
b = 1.162640 + 0.546817I
4.93245 0.64307I 7.39513 + 2.13919I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.439575 + 0.615498I
a = 1.149600 0.115471I
b = 0.698187 + 0.241172I
0.66030 + 2.49036I 1.19350 2.71078I
u = 0.439575 0.615498I
a = 1.149600 + 0.115471I
b = 0.698187 0.241172I
0.66030 2.49036I 1.19350 + 2.71078I
u = 1.178450 + 0.416595I
a = 0.747568 0.419084I
b = 1.21853 1.36797I
2.16092 + 3.60298I 0
u = 1.178450 0.416595I
a = 0.747568 + 0.419084I
b = 1.21853 + 1.36797I
2.16092 3.60298I 0
u = 1.216440 + 0.411059I
a = 0.122681 + 0.284283I
b = 0.107118 + 0.672929I
2.06773 + 2.36101I 0
u = 1.216440 0.411059I
a = 0.122681 0.284283I
b = 0.107118 0.672929I
2.06773 2.36101I 0
u = 1.234760 + 0.357842I
a = 1.253570 + 0.379206I
b = 0.889269 + 0.916124I
4.17367 5.52755I 0
u = 1.234760 0.357842I
a = 1.253570 0.379206I
b = 0.889269 0.916124I
4.17367 + 5.52755I 0
u = 1.262070 + 0.281444I
a = 1.224250 + 0.302827I
b = 0.931584 + 0.992768I
8.23912 + 1.98284I 0
u = 1.262070 0.281444I
a = 1.224250 0.302827I
b = 0.931584 0.992768I
8.23912 1.98284I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.036670 + 0.779876I
a = 0.780160 0.133305I
b = 0.327917 + 0.979792I
1.06082 + 3.18631I 0
u = 1.036670 0.779876I
a = 0.780160 + 0.133305I
b = 0.327917 0.979792I
1.06082 3.18631I 0
u = 0.552589 + 0.430106I
a = 1.64524 + 0.28442I
b = 1.032220 + 0.058574I
2.41961 + 0.34900I 5.67559 + 0.69336I
u = 0.552589 0.430106I
a = 1.64524 0.28442I
b = 1.032220 0.058574I
2.41961 0.34900I 5.67559 0.69336I
u = 0.148725 + 1.301670I
a = 0.530595 + 0.740434I
b = 0.767567 0.682700I
0.33138 10.71180I 0
u = 0.148725 1.301670I
a = 0.530595 0.740434I
b = 0.767567 + 0.682700I
0.33138 + 10.71180I 0
u = 1.220660 + 0.503248I
a = 0.890977 0.373556I
b = 1.15837 1.27935I
2.20718 9.21559I 0
u = 1.220660 0.503248I
a = 0.890977 + 0.373556I
b = 1.15837 + 1.27935I
2.20718 + 9.21559I 0
u = 1.32135
a = 0.470030
b = 1.92284
3.01024 0
u = 1.282490 + 0.377633I
a = 1.306930 + 0.361809I
b = 0.939471 + 0.891330I
6.96009 + 10.29770I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.282490 0.377633I
a = 1.306930 0.361809I
b = 0.939471 0.891330I
6.96009 10.29770I 0
u = 0.230086 + 0.571128I
a = 1.52959 0.58458I
b = 0.360119 + 0.766641I
0.07957 + 2.04453I 1.68178 3.11842I
u = 0.230086 0.571128I
a = 1.52959 + 0.58458I
b = 0.360119 0.766641I
0.07957 2.04453I 1.68178 + 3.11842I
u = 0.603771 + 0.027652I
a = 1.30220 1.60314I
b = 0.026312 1.201250I
1.77198 + 6.54158I 1.95190 4.07828I
u = 0.603771 0.027652I
a = 1.30220 + 1.60314I
b = 0.026312 + 1.201250I
1.77198 6.54158I 1.95190 + 4.07828I
u = 1.41437 + 0.17024I
a = 0.578378 0.040899I
b = 1.37461 0.73147I
7.33407 4.81411I 0
u = 1.41437 0.17024I
a = 0.578378 + 0.040899I
b = 1.37461 + 0.73147I
7.33407 + 4.81411I 0
u = 0.131343 + 0.540464I
a = 1.041380 0.558162I
b = 0.427017 + 0.464554I
0.725380 + 1.180740I 4.24551 4.64635I
u = 0.131343 0.540464I
a = 1.041380 + 0.558162I
b = 0.427017 0.464554I
0.725380 1.180740I 4.24551 + 4.64635I
u = 1.24203 + 0.75104I
a = 0.513911 0.174215I
b = 0.208309 + 0.988394I
1.64043 + 3.35164I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.24203 0.75104I
a = 0.513911 + 0.174215I
b = 0.208309 0.988394I
1.64043 3.35164I 0
u = 1.46335 + 0.12164I
a = 0.480507 + 0.020198I
b = 0.528818 0.273350I
3.43024 + 0.04199I 0
u = 1.46335 0.12164I
a = 0.480507 0.020198I
b = 0.528818 + 0.273350I
3.43024 0.04199I 0
u = 1.34178 + 0.60423I
a = 1.029560 0.209600I
b = 1.12935 1.20094I
0.85217 12.06680I 0
u = 1.34178 0.60423I
a = 1.029560 + 0.209600I
b = 1.12935 + 1.20094I
0.85217 + 12.06680I 0
u = 1.38287 + 0.55098I
a = 0.963569 0.160924I
b = 1.14535 1.18423I
5.82286 + 8.54509I 0
u = 1.38287 0.55098I
a = 0.963569 + 0.160924I
b = 1.14535 + 1.18423I
5.82286 8.54509I 0
u = 1.36397 + 0.63423I
a = 1.064370 0.179821I
b = 1.12193 1.19463I
3.5526 + 17.3742I 0
u = 1.36397 0.63423I
a = 1.064370 + 0.179821I
b = 1.12193 + 1.19463I
3.5526 17.3742I 0
u = 1.51493 + 0.02764I
a = 0.466561 + 0.057922I
b = 0.646933 0.507679I
6.87250 + 4.47387I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.51493 0.02764I
a = 0.466561 0.057922I
b = 0.646933 + 0.507679I
6.87250 4.47387I 0
u = 1.38354 + 0.69467I
a = 0.327847 0.218814I
b = 0.099863 + 0.997213I
4.70888 + 0.05763I 0
u = 1.38354 0.69467I
a = 0.327847 + 0.218814I
b = 0.099863 0.997213I
4.70888 0.05763I 0
u = 1.32097 + 0.83036I
a = 0.479237 0.302029I
b = 0.183639 + 1.056270I
4.21471 7.50514I 0
u = 1.32097 0.83036I
a = 0.479237 + 0.302029I
b = 0.183639 1.056270I
4.21471 + 7.50514I 0
u = 1.64763 + 0.24323I
a = 0.462216 + 0.038991I
b = 0.502599 0.125500I
7.01352 4.49963I 0
u = 1.64763 0.24323I
a = 0.462216 0.038991I
b = 0.502599 + 0.125500I
7.01352 + 4.49963I 0
u = 0.194550 + 0.184951I
a = 4.04115 1.45822I
b = 0.085459 + 0.814007I
3.77027 + 0.40204I 7.60841 1.19387I
u = 0.194550 0.184951I
a = 4.04115 + 1.45822I
b = 0.085459 0.814007I
3.77027 0.40204I 7.60841 + 1.19387I
13
II.
I
u
2
= h−u
14
+u
13
+· · ·u
2
+b, 7u
14
+6u
13
+· · ·+a+7, u
15
u
14
+· · ·u+1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
8
=
7u
14
6u
13
+ ··· 23u 7
u
14
u
13
+ ··· + 7u
3
+ u
2
a
9
=
8u
14
7u
13
+ ··· 23u 7
u
14
u
13
+ ··· + 7u
3
+ u
2
a
6
=
7u
14
u
13
+ ··· 142u
2
+ 31
u
13
+ u
12
+ ··· 6u
2
u
a
1
=
u
u
3
+ u
a
10
=
23u
14
+ 17u
13
+ ··· + 52u + 24
u
14
u
13
+ ··· 6u 1
a
3
=
18u
14
u
13
+ ··· 8u 52
u
14
+ 7u
12
+ ··· 25u
2
+ 6
a
2
=
22u
14
u
13
+ ··· 9u 63
4u
14
+ 27u
12
+ ··· + u + 13
a
7
=
37u
14
+ 15u
13
+ ··· + 32u + 61
12u
14
8u
13
+ ··· 17u 12
a
7
=
37u
14
+ 15u
13
+ ··· + 32u + 61
12u
14
8u
13
+ ··· 17u 12
(ii) Obstruction class = 1
(iii) Cusp Shapes = 50u
14
+ 49u
13
+ 284u
12
223u
11
761u
10
+ 533u
9
+ 1213u
8
928u
7
1180u
6
+ 910u
5
+ 666u
4
532u
3
178u
2
+ 116u + 19
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 4u
13
+ 8u
11
u
10
+ 8u
9
3u
8
+ 4u
7
5u
6
5u
4
3u
2
1
c
2
u
15
+ 8u
14
+ ··· 6u 1
c
3
u
15
+ u
13
u
12
2u
11
2u
9
+ 4u
8
+ 2u
7
+ u
5
4u
4
+ 1
c
4
u
15
u
14
+ ··· u + 1
c
5
u
15
u
14
+ ··· u + 1
c
6
u
15
+ 4u
13
+ 8u
11
+ u
10
+ 8u
9
+ 3u
8
+ 4u
7
+ 5u
6
+ 5u
4
+ 3u
2
+ 1
c
7
u
15
4u
13
+ ··· + 2u + 1
c
8
u
15
4u
11
+ u
10
+ 2u
8
+ 4u
7
2u
6
2u
4
u
3
+ u
2
+ 1
c
9
u
15
+ u
14
+ ··· u 1
c
10
u
15
4u
13
+ ··· + 7u + 1
c
11
u
15
+ u
14
+ ··· u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
15
+ 8y
14
+ ··· 6y 1
c
2
y
15
+ 16y
13
+ ··· 2y 1
c
3
y
15
+ 2y
14
+ ··· + 8y
2
1
c
4
, c
11
y
15
13y
14
+ ··· + 15y 1
c
5
, c
9
y
15
15y
14
+ ··· + 13y 1
c
7
y
15
8y
14
+ ··· 10y 1
c
8
y
15
8y
13
+ ··· 2y 1
c
10
y
15
8y
14
+ ··· + 7y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.906864 + 0.375829I
a = 0.537067 + 0.586861I
b = 0.058211 + 1.303160I
0.29078 + 2.83345I 2.46812 4.57300I
u = 0.906864 0.375829I
a = 0.537067 0.586861I
b = 0.058211 1.303160I
0.29078 2.83345I 2.46812 + 4.57300I
u = 0.786429 + 0.437105I
a = 0.904328 + 0.831344I
b = 0.187116 + 0.988050I
1.62575 7.79387I 1.04019 + 8.56161I
u = 0.786429 0.437105I
a = 0.904328 0.831344I
b = 0.187116 0.988050I
1.62575 + 7.79387I 1.04019 8.56161I
u = 0.878542 + 0.674122I
a = 0.998231 + 0.130624I
b = 0.106366 + 0.803002I
3.32177 0.98994I 4.43129 + 2.79552I
u = 0.878542 0.674122I
a = 0.998231 0.130624I
b = 0.106366 0.803002I
3.32177 + 0.98994I 4.43129 2.79552I
u = 1.121450 + 0.726120I
a = 0.692219 + 0.007640I
b = 0.323008 + 0.742064I
2.02887 + 3.34950I 5.67040 7.67904I
u = 1.121450 0.726120I
a = 0.692219 0.007640I
b = 0.323008 0.742064I
2.02887 3.34950I 5.67040 + 7.67904I
u = 0.650838 + 0.048933I
a = 1.97813 + 0.68804I
b = 1.101810 + 0.205790I
3.03538 + 0.81175I 4.74302 6.70940I
u = 0.650838 0.048933I
a = 1.97813 0.68804I
b = 1.101810 0.205790I
3.03538 0.81175I 4.74302 + 6.70940I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.600420 + 0.033463I
a = 2.87415 + 0.67196I
b = 0.930317 + 0.110590I
1.74022 + 3.03027I 6.59174 2.91144I
u = 0.600420 0.033463I
a = 2.87415 0.67196I
b = 0.930317 0.110590I
1.74022 3.03027I 6.59174 + 2.91144I
u = 1.41375
a = 0.353438
b = 1.41559
2.66084 10.5800
u = 1.62063 + 0.25048I
a = 0.399460 + 0.007533I
b = 0.881854 + 0.297666I
6.62917 4.72492I 6.04899 + 6.78091I
u = 1.62063 0.25048I
a = 0.399460 0.007533I
b = 0.881854 0.297666I
6.62917 + 4.72492I 6.04899 6.78091I
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
15
+ 4u
13
+ 8u
11
u
10
+ 8u
9
3u
8
+ 4u
7
5u
6
5u
4
3u
2
1)
· (u
89
+ u
88
+ ··· + u + 1)
c
2
(u
15
+ 8u
14
+ ··· 6u 1)(u
89
+ 45u
88
+ ··· 7u 1)
c
3
(u
15
+ u
13
u
12
2u
11
2u
9
+ 4u
8
+ 2u
7
+ u
5
4u
4
+ 1)
· (u
89
3u
88
+ ··· + 27u + 1)
c
4
(u
15
u
14
+ ··· u + 1)(u
89
30u
87
+ ··· 598u + 131)
c
5
(u
15
u
14
+ ··· u + 1)(u
89
27u
87
+ ··· + 2u 1)
c
6
(u
15
+ 4u
13
+ 8u
11
+ u
10
+ 8u
9
+ 3u
8
+ 4u
7
+ 5u
6
+ 5u
4
+ 3u
2
+ 1)
· (u
89
+ u
88
+ ··· + u + 1)
c
7
(u
15
4u
13
+ ··· + 2u + 1)(u
89
u
88
+ ··· 219u + 3737)
c
8
(u
15
4u
11
+ u
10
+ 2u
8
+ 4u
7
2u
6
2u
4
u
3
+ u
2
+ 1)
· (u
89
+ u
88
+ ··· 11u + 3)
c
9
(u
15
+ u
14
+ ··· u 1)(u
89
27u
87
+ ··· + 2u 1)
c
10
(u
15
4u
13
+ ··· + 7u + 1)(u
89
11u
88
+ ··· + 2752u 593)
c
11
(u
15
+ u
14
+ ··· u 1)(u
89
30u
87
+ ··· 598u + 131)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
15
+ 8y
14
+ ··· 6y 1)(y
89
+ 45y
88
+ ··· 7y 1)
c
2
(y
15
+ 16y
13
+ ··· 2y 1)(y
89
+ y
88
+ ··· 39y 1)
c
3
(y
15
+ 2y
14
+ ··· + 8y
2
1)(y
89
+ 3y
88
+ ··· + 143y 1)
c
4
, c
11
(y
15
13y
14
+ ··· + 15y 1)(y
89
60y
88
+ ··· + 397166y 17161)
c
5
, c
9
(y
15
15y
14
+ ··· + 13y 1)(y
89
54y
88
+ ··· + 32y 1)
c
7
(y
15
8y
14
+ ··· 10y 1)
· (y
89
43y
88
+ ··· 186682455y 13965169)
c
8
(y
15
8y
13
+ ··· 2y 1)(y
89
+ 5y
88
+ ··· + 181y 9)
c
10
(y
15
8y
14
+ ··· + 7y 1)(y
89
27y
88
+ ··· + 8974170y 351649)
20