11a
191
(K11a
191
)
A knot diagram
1
Linearized knot diagam
6 1 9 10 7 2 3 11 4 5 8
Solving Sequence
5,10
11 4 9 3 8 1 2 7 6
c
10
c
4
c
9
c
3
c
8
c
11
c
2
c
7
c
5
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
41
+ u
40
+ ··· 3u + 1i
* 1 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
41
+ u
40
+ · · · 3u + 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
u
a
9
=
u
2
+ 1
u
2
a
3
=
u
3
+ 2u
u
3
+ u
a
8
=
u
4
3u
2
+ 1
u
6
2u
4
u
2
a
1
=
u
8
5u
6
+ 7u
4
2u
2
+ 1
u
10
4u
8
+ 3u
6
+ 2u
4
+ u
2
a
2
=
u
21
12u
19
+ ··· 8u
3
+ 3u
u
23
11u
21
+ ··· 3u
5
+ u
a
7
=
u
12
7u
10
+ 17u
8
16u
6
+ 6u
4
5u
2
+ 1
u
12
6u
10
+ 12u
8
8u
6
+ u
4
2u
2
a
6
=
u
25
+ 14u
23
+ ··· + 10u
3
u
u
25
+ 13u
23
+ ··· + 2u
3
+ u
a
6
=
u
25
+ 14u
23
+ ··· + 10u
3
u
u
25
+ 13u
23
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
39
88u
37
+ ··· + 20u 22
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
41
u
40
+ ··· u 1
c
2
, c
5
u
41
+ 13u
40
+ ··· + 9u + 1
c
3
, c
4
, c
9
c
10
u
41
u
40
+ ··· 3u 1
c
7
u
41
+ u
40
+ ··· 27u 13
c
8
, c
11
u
41
7u
40
+ ··· + 33u 23
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
41
13y
40
+ ··· + 9y 1
c
2
, c
5
y
41
+ 31y
40
+ ··· + 69y 1
c
3
, c
4
, c
9
c
10
y
41
45y
40
+ ··· + 9y 1
c
7
y
41
+ 7y
40
+ ··· + 417y 169
c
8
, c
11
y
41
+ 27y
40
+ ··· + 6701y 529
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.578203 + 0.591978I
4.82587 9.58597I 9.09685 + 8.79000I
u = 0.578203 0.591978I
4.82587 + 9.58597I 9.09685 8.79000I
u = 0.560583 + 0.593399I
5.64442 + 3.73832I 7.40652 3.76364I
u = 0.560583 0.593399I
5.64442 3.73832I 7.40652 + 3.76364I
u = 0.566944 + 0.522538I
0.95032 4.40767I 14.5602 + 7.4521I
u = 0.566944 0.522538I
0.95032 + 4.40767I 14.5602 7.4521I
u = 0.727131 + 0.205192I
0.35537 + 4.91287I 14.9536 7.2181I
u = 0.727131 0.205192I
0.35537 4.91287I 14.9536 + 7.2181I
u = 0.416867 + 0.614275I
6.06764 + 0.37199I 6.12023 2.74369I
u = 0.416867 0.614275I
6.06764 0.37199I 6.12023 + 2.74369I
u = 0.394899 + 0.619383I
5.36506 + 5.46610I 7.42623 2.57301I
u = 0.394899 0.619383I
5.36506 5.46610I 7.42623 + 2.57301I
u = 0.490771 + 0.541723I
2.34343 + 1.87271I 6.33668 4.08392I
u = 0.490771 0.541723I
2.34343 1.87271I 6.33668 + 4.08392I
u = 0.728695
4.17004 21.6690
u = 0.639413 + 0.255948I
0.190368 + 0.170845I 13.47533 + 2.06062I
u = 0.639413 0.255948I
0.190368 0.170845I 13.47533 2.06062I
u = 0.373862 + 0.500528I
0.399312 + 0.816647I 12.47963 0.47721I
u = 0.373862 0.500528I
0.399312 0.816647I 12.47963 + 0.47721I
u = 1.45206 + 0.14818I
0.55160 2.78997I 0
u = 1.45206 0.14818I
0.55160 + 2.78997I 0
u = 1.46754 + 0.15667I
0.01677 3.06881I 0
u = 1.46754 0.15667I
0.01677 + 3.06881I 0
u = 0.039862 + 0.468366I
2.07509 2.62621I 6.57273 + 3.48222I
u = 0.039862 0.468366I
2.07509 + 2.62621I 6.57273 3.48222I
u = 1.52852 + 0.10506I
6.77252 + 0.98297I 0
u = 1.52852 0.10506I
6.77252 0.98297I 0
u = 1.52598 + 0.14865I
4.35344 4.30283I 0
u = 1.52598 0.14865I
4.35344 + 4.30283I 0
u = 1.55359 + 0.03904I
7.11441 + 0.76394I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.55359 0.03904I
7.11441 0.76394I 0
u = 1.54582 + 0.17878I
1.34838 6.54087I 0
u = 1.54582 0.17878I
1.34838 + 6.54087I 0
u = 1.55308 + 0.15321I
8.04273 + 6.85644I 0
u = 1.55308 0.15321I
8.04273 6.85644I 0
u = 1.55361 + 0.17968I
2.26534 + 12.39950I 0
u = 1.55361 0.17968I
2.26534 12.39950I 0
u = 1.58360 + 0.04172I
8.17072 5.73177I 0
u = 1.58360 0.04172I
8.17072 + 5.73177I 0
u = 1.58454
12.0025 0
u = 0.384337
0.582535 17.0140
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
41
u
40
+ ··· u 1
c
2
, c
5
u
41
+ 13u
40
+ ··· + 9u + 1
c
3
, c
4
, c
9
c
10
u
41
u
40
+ ··· 3u 1
c
7
u
41
+ u
40
+ ··· 27u 13
c
8
, c
11
u
41
7u
40
+ ··· + 33u 23
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
41
13y
40
+ ··· + 9y 1
c
2
, c
5
y
41
+ 31y
40
+ ··· + 69y 1
c
3
, c
4
, c
9
c
10
y
41
45y
40
+ ··· + 9y 1
c
7
y
41
+ 7y
40
+ ··· + 417y 169
c
8
, c
11
y
41
+ 27y
40
+ ··· + 6701y 529
8