11a
192
(K11a
192
)
A knot diagram
1
Linearized knot diagam
6 1 10 9 7 2 3 11 4 5 8
Solving Sequence
5,9
4 10 11 3 8 1 2 7 6
c
4
c
9
c
10
c
3
c
8
c
11
c
2
c
7
c
5
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
48
+ u
47
+ ··· 4u 1i
* 1 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
48
+ u
47
+ · · · 4u 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
10
=
u
u
3
+ u
a
11
=
u
3
2u
u
3
+ u
a
3
=
u
2
+ 1
u
4
2u
2
a
8
=
u
7
+ 4u
5
+ 4u
3
u
7
3u
5
2u
3
+ u
a
1
=
u
11
6u
9
12u
7
8u
5
u
3
2u
u
11
+ 5u
9
+ 8u
7
+ 3u
5
u
3
+ u
a
2
=
u
26
13u
24
+ ··· + 3u
2
+ 1
u
26
+ 12u
24
+ ··· + 4u
4
3u
2
a
7
=
u
13
+ 6u
11
+ 13u
9
+ 12u
7
+ 6u
5
+ 4u
3
+ u
u
15
7u
13
18u
11
19u
9
6u
7
2u
5
4u
3
+ u
a
6
=
u
28
13u
26
+ ··· + u
2
+ 1
u
30
+ 14u
28
+ ··· 8u
4
+ u
2
a
6
=
u
28
13u
26
+ ··· + u
2
+ 1
u
30
+ 14u
28
+ ··· 8u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
47
+ 4u
46
+ ··· 24u 22
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
48
u
47
+ ··· + 4u
2
1
c
2
, c
5
u
48
+ 15u
47
+ ··· + 8u + 1
c
3
, c
4
, c
9
u
48
+ u
47
+ ··· 4u 1
c
7
u
48
+ u
47
+ ··· 282u 61
c
8
, c
11
u
48
7u
47
+ ··· 16u + 1
c
10
u
48
u
47
+ ··· 198u 37
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
48
15y
47
+ ··· 8y + 1
c
2
, c
5
y
48
+ 37y
47
+ ··· 40y + 1
c
3
, c
4
, c
9
y
48
+ 45y
47
+ ··· 8y + 1
c
7
y
48
+ 13y
47
+ ··· 22428y + 3721
c
8
, c
11
y
48
+ 41y
47
+ ··· + 200y + 1
c
10
y
48
+ 17y
47
+ ··· + 24140y + 1369
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.068968 + 1.151590I
2.32852 + 2.32135I 10.38591 + 0.I
u = 0.068968 1.151590I
2.32852 2.32135I 10.38591 + 0.I
u = 0.683357 + 0.405926I
5.21260 + 9.77857I 8.26482 8.48475I
u = 0.683357 0.405926I
5.21260 9.77857I 8.26482 + 8.48475I
u = 0.673489 + 0.415868I
6.02949 3.89902I 6.63992 + 3.50313I
u = 0.673489 0.415868I
6.02949 + 3.89902I 6.63992 3.50313I
u = 0.576773 + 0.522352I
5.67693 5.57732I 6.94459 + 2.40000I
u = 0.576773 0.522352I
5.67693 + 5.57732I 6.94459 2.40000I
u = 0.589475 + 0.506546I
6.39491 0.29411I 5.62712 + 2.80614I
u = 0.589475 0.506546I
6.39491 + 0.29411I 5.62712 2.80614I
u = 0.173044 + 1.237190I
0.64228 2.86520I 0
u = 0.173044 1.237190I
0.64228 + 2.86520I 0
u = 0.640543 + 0.369715I
0.68024 + 4.58900I 13.6527 7.1281I
u = 0.640543 0.369715I
0.68024 4.58900I 13.6527 + 7.1281I
u = 0.603013 + 0.419142I
2.62424 1.94253I 5.82906 + 3.77516I
u = 0.603013 0.419142I
2.62424 + 1.94253I 5.82906 3.77516I
u = 0.090373 + 1.285590I
3.24763 + 1.60907I 0
u = 0.090373 1.285590I
3.24763 1.60907I 0
u = 0.218506 + 1.294790I
3.84600 8.17225I 0
u = 0.218506 1.294790I
3.84600 + 8.17225I 0
u = 0.505212 + 0.440988I
0.223689 0.846659I 12.11040 + 0.46472I
u = 0.505212 0.440988I
0.223689 + 0.846659I 12.11040 0.46472I
u = 0.196581 + 1.315430I
4.69521 + 2.82559I 0
u = 0.196581 1.315430I
4.69521 2.82559I 0
u = 0.627758 + 0.108061I
0.50327 5.09371I 14.3561 + 6.8355I
u = 0.627758 0.108061I
0.50327 + 5.09371I 14.3561 6.8355I
u = 0.609769
4.36789 20.8280
u = 0.582317 + 0.152321I
0.1388920 0.0056976I 12.76408 1.77198I
u = 0.582317 0.152321I
0.1388920 + 0.0056976I 12.76408 + 1.77198I
u = 0.012644 + 1.408660I
7.96823 + 2.83806I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.012644 1.408660I
7.96823 2.83806I 0
u = 0.074086 + 0.558977I
2.01219 + 2.59814I 6.70685 3.63850I
u = 0.074086 0.558977I
2.01219 2.59814I 6.70685 + 3.63850I
u = 0.20167 + 1.44404I
5.75150 + 1.80433I 0
u = 0.20167 1.44404I
5.75150 1.80433I 0
u = 0.24122 + 1.44657I
5.16114 + 7.81947I 0
u = 0.24122 1.44657I
5.16114 7.81947I 0
u = 0.22417 + 1.45752I
8.65974 4.98357I 0
u = 0.22417 1.45752I
8.65974 + 4.98357I 0
u = 0.25363 + 1.46457I
11.2407 + 13.2008I 0
u = 0.25363 1.46457I
11.2407 13.2008I 0
u = 0.24833 + 1.46680I
12.09980 7.26678I 0
u = 0.24833 1.46680I
12.09980 + 7.26678I 0
u = 0.19351 + 1.48062I
12.14030 2.80062I 0
u = 0.19351 1.48062I
12.14030 + 2.80062I 0
u = 0.20123 + 1.47969I
12.80670 3.15758I 0
u = 0.20123 1.47969I
12.80670 + 3.15758I 0
u = 0.361931
0.601903 16.4760
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
48
u
47
+ ··· + 4u
2
1
c
2
, c
5
u
48
+ 15u
47
+ ··· + 8u + 1
c
3
, c
4
, c
9
u
48
+ u
47
+ ··· 4u 1
c
7
u
48
+ u
47
+ ··· 282u 61
c
8
, c
11
u
48
7u
47
+ ··· 16u + 1
c
10
u
48
u
47
+ ··· 198u 37
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
48
15y
47
+ ··· 8y + 1
c
2
, c
5
y
48
+ 37y
47
+ ··· 40y + 1
c
3
, c
4
, c
9
y
48
+ 45y
47
+ ··· 8y + 1
c
7
y
48
+ 13y
47
+ ··· 22428y + 3721
c
8
, c
11
y
48
+ 41y
47
+ ··· + 200y + 1
c
10
y
48
+ 17y
47
+ ··· + 24140y + 1369
8