11a
193
(K11a
193
)
A knot diagram
1
Linearized knot diagam
7 1 11 10 9 2 3 6 4 5 8
Solving Sequence
4,9
10 5 6 11 3 8 1 2 7
c
9
c
4
c
5
c
10
c
3
c
8
c
11
c
2
c
7
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
47
+ u
46
+ ··· 4u
3
+ 1i
* 1 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
47
+ u
46
+ · · · 4u
3
+ 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
6
=
u
3
+ 2u
u
3
+ u
a
11
=
u
2
+ 1
u
4
2u
2
a
3
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
8
=
u
6
3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
1
=
u
16
+ 7u
14
19u
12
+ 22u
10
3u
8
14u
6
+ 6u
4
+ 2u
2
+ 1
u
16
+ 6u
14
14u
12
+ 14u
10
2u
8
6u
6
+ 4u
4
2u
2
a
2
=
u
39
16u
37
+ ··· + 24u
5
+ 6u
3
u
39
15u
37
+ ··· 3u
5
+ u
a
7
=
u
18
7u
16
+ 20u
14
27u
12
+ 11u
10
+ 13u
8
14u
6
+ 3u
2
+ 1
u
20
+ 8u
18
26u
16
+ 40u
14
19u
12
24u
10
+ 30u
8
9u
4
a
7
=
u
18
7u
16
+ 20u
14
27u
12
+ 11u
10
+ 13u
8
14u
6
+ 3u
2
+ 1
u
20
+ 8u
18
26u
16
+ 40u
14
19u
12
24u
10
+ 30u
8
9u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
44
+ 68u
42
+ ··· 8u
2
+ 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
47
+ u
46
+ ··· 2u
4
1
c
2
u
47
+ 23u
46
+ ··· 4u
2
1
c
3
, c
5
, c
8
u
47
+ 3u
46
+ ··· + 8u + 1
c
4
, c
9
, c
10
u
47
u
46
+ ··· 4u
3
1
c
7
u
47
u
46
+ ··· 22u 53
c
11
u
47
+ 5u
46
+ ··· 64u 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
47
+ 23y
46
+ ··· 4y
2
1
c
2
y
47
+ 3y
46
+ ··· 8y 1
c
3
, c
5
, c
8
y
47
+ 47y
46
+ ··· 8y 1
c
4
, c
9
, c
10
y
47
37y
46
+ ··· 16y
2
1
c
7
y
47
17y
46
+ ··· + 47124y 2809
c
11
y
47
5y
46
+ ··· + 1312y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.006280 + 0.120689I
0.91501 + 3.60507I 1.64705 4.50144I
u = 1.006280 0.120689I
0.91501 3.60507I 1.64705 + 4.50144I
u = 1.10074
1.86864 5.66480
u = 0.030039 + 0.875142I
10.56620 + 0.61135I 3.63402 + 0.19416I
u = 0.030039 0.875142I
10.56620 0.61135I 3.63402 0.19416I
u = 0.055754 + 0.872511I
8.79586 + 8.79339I 1.19946 6.11283I
u = 0.055754 0.872511I
8.79586 8.79339I 1.19946 + 6.11283I
u = 0.047289 + 0.862249I
6.19361 3.85394I 1.82254 + 2.54256I
u = 0.047289 0.862249I
6.19361 + 3.85394I 1.82254 2.54256I
u = 0.021231 + 0.815572I
3.88334 2.31182I 2.62267 + 3.54472I
u = 0.021231 0.815572I
3.88334 + 2.31182I 2.62267 3.54472I
u = 1.257110 + 0.182931I
1.02961 1.77431I 0
u = 1.257110 0.182931I
1.02961 + 1.77431I 0
u = 1.223180 + 0.419244I
5.19614 4.16894I 0
u = 1.223180 0.419244I
5.19614 + 4.16894I 0
u = 1.230390 + 0.406583I
2.54267 0.69419I 0
u = 1.230390 0.406583I
2.54267 + 0.69419I 0
u = 1.259550 + 0.357794I
0.05039 1.90652I 0
u = 1.259550 0.357794I
0.05039 + 1.90652I 0
u = 1.249070 + 0.416752I
6.79512 + 4.01291I 0
u = 1.249070 0.416752I
6.79512 4.01291I 0
u = 1.316370 + 0.096272I
5.85726 + 2.05767I 0
u = 1.316370 0.096272I
5.85726 2.05767I 0
u = 1.324170 + 0.059973I
4.48508 + 2.49902I 0
u = 1.324170 0.059973I
4.48508 2.49902I 0
u = 1.319560 + 0.153160I
5.16266 + 3.85903I 0
u = 1.319560 0.153160I
5.16266 3.85903I 0
u = 1.288740 + 0.366736I
0.19960 + 6.56847I 0
u = 1.288740 0.366736I
0.19960 6.56847I 0
u = 1.331010 + 0.174169I
3.09173 8.65002I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.331010 0.174169I
3.09173 + 8.65002I 0
u = 1.298060 + 0.405269I
6.42755 5.19896I 0
u = 1.298060 0.405269I
6.42755 + 5.19896I 0
u = 1.308420 + 0.393753I
1.96046 + 8.36038I 0
u = 1.308420 0.393753I
1.96046 8.36038I 0
u = 1.315440 + 0.399117I
4.51106 13.35320I 0
u = 1.315440 0.399117I
4.51106 + 13.35320I 0
u = 0.283978 + 0.527411I
1.92558 + 6.21305I 1.17116 8.71697I
u = 0.283978 0.527411I
1.92558 6.21305I 1.17116 + 8.71697I
u = 0.146756 + 0.548854I
3.20832 0.82330I 2.58409 0.88162I
u = 0.146756 0.548854I
3.20832 + 0.82330I 2.58409 + 0.88162I
u = 0.519306 + 0.197953I
0.86762 3.28146I 4.49365 + 2.23360I
u = 0.519306 0.197953I
0.86762 + 3.28146I 4.49365 2.23360I
u = 0.266858 + 0.458418I
0.27118 1.71840I 4.99592 + 5.33344I
u = 0.266858 0.458418I
0.27118 + 1.71840I 4.99592 5.33344I
u = 0.345961 + 0.277574I
0.861649 0.739192I 8.37308 + 5.15460I
u = 0.345961 0.277574I
0.861649 + 0.739192I 8.37308 5.15460I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
47
+ u
46
+ ··· 2u
4
1
c
2
u
47
+ 23u
46
+ ··· 4u
2
1
c
3
, c
5
, c
8
u
47
+ 3u
46
+ ··· + 8u + 1
c
4
, c
9
, c
10
u
47
u
46
+ ··· 4u
3
1
c
7
u
47
u
46
+ ··· 22u 53
c
11
u
47
+ 5u
46
+ ··· 64u 16
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
47
+ 23y
46
+ ··· 4y
2
1
c
2
y
47
+ 3y
46
+ ··· 8y 1
c
3
, c
5
, c
8
y
47
+ 47y
46
+ ··· 8y 1
c
4
, c
9
, c
10
y
47
37y
46
+ ··· 16y
2
1
c
7
y
47
17y
46
+ ··· + 47124y 2809
c
11
y
47
5y
46
+ ··· + 1312y 256
8