11a
197
(K11a
197
)
A knot diagram
1
Linearized knot diagam
6 1 11 7 10 2 4 3 5 9 8
Solving Sequence
8,11 1,4
3 9 2 7 5 6 10
c
11
c
3
c
8
c
2
c
7
c
4
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 1133732u
18
5530440u
17
+ ··· + 1639243a + 14603996, u
19
3u
17
+ ··· + 5u + 1i
I
u
2
= h4.04940 × 10
223
u
67
+ 3.30886 × 10
224
u
66
+ ··· + 4.64646 × 10
224
b 5.28089 × 10
226
,
2.91872 × 10
228
u
67
+ 2.08756 × 10
229
u
66
+ ··· + 5.97071 × 10
227
a 5.77931 × 10
230
,
u
68
+ 7u
67
+ ··· + 375u + 257i
I
u
3
= hb + u, u
7
+ u
6
2u
4
+ u
2
+ a + 2u 1, u
8
u
6
u
5
+ 2u
4
u + 1i
I
u
4
= h−3u
7
2u
6
+ 2u
5
4u
4
+ 3u
2
+ b 7u + 4, 4u
7
3u
6
+ 2u
5
6u
4
u
3
+ 3u
2
+ a 9u + 5,
u
8
u
6
+ 2u
5
u
4
u
3
+ 3u
2
3u + 1i
* 4 irreducible components of dim
C
= 0, with total 103 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, 1.13 × 10
6
u
18
5.53 × 10
6
u
17
+ · · · + 1.64 × 10
6
a + 1.46 ×
10
7
, u
19
3u
17
+ · · · + 5u + 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
4
=
0.691619u
18
+ 3.37378u
17
+ ··· 28.3695u 8.90899
u
a
3
=
0.691619u
18
+ 3.37378u
17
+ ··· 29.3695u 8.90899
u
a
9
=
4.15807u
18
6.66141u
17
+ ··· + 52.3548u + 8.42543
0.622113u
18
+ 1.86560u
17
+ ··· 15.1773u 3.37378
a
2
=
0.0695059u
18
+ 5.23938u
17
+ ··· 44.5467u 12.2828
0.756830u
18
1.16457u
17
+ ··· + 10.9501u + 1.86560
a
7
=
2.91384u
18
2.93021u
17
+ ··· + 20.0003u + 1.67787
0.622113u
18
+ 1.86560u
17
+ ··· 15.1773u 3.37378
a
5
=
4.05196u
18
2.08218u
17
+ ··· + 21.9378u + 3.05750
1.38107u
18
0.495631u
17
+ ··· + 2.38762u 0.443568
a
6
=
4.07319u
18
+ 0.0169841u
17
+ ··· 3.37920u 2.08628
1.50818u
18
+ 0.134717u
17
+ ··· 1.03345u 1.31373
a
10
=
1.53997u
18
5.15071u
17
+ ··· + 38.3233u + 9.86555
0.959164u
18
+ 1.36657u
17
+ ··· 11.2769u 2.27262
a
10
=
1.53997u
18
5.15071u
17
+ ··· + 38.3233u + 9.86555
0.959164u
18
+ 1.36657u
17
+ ··· 11.2769u 2.27262
(ii) Obstruction class = 1
(iii) Cusp Shapes =
18167001
1639243
u
18
11571693
1639243
u
17
+ ··· +
103230908
1639243
u
4877099
1639243
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
9
u
19
4u
17
+ ··· u + 1
c
2
, c
10
u
19
+ 8u
18
+ ··· + 5u + 1
c
3
, c
11
u
19
3u
17
+ ··· + 5u + 1
c
4
, c
7
u
19
12u
18
+ ··· 224u + 32
c
8
u
19
18u
18
+ ··· 1184u + 192
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
y
19
8y
18
+ ··· + 5y 1
c
2
, c
10
y
19
+ 12y
18
+ ··· 23y 1
c
3
, c
11
y
19
6y
18
+ ··· + 29y 1
c
4
, c
7
y
19
+ 12y
18
+ ··· + 1536y 1024
c
8
y
19
4y
18
+ ··· + 50176y 36864
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.922328 + 0.410149I
a = 0.097023 + 0.610902I
b = 0.922328 + 0.410149I
1.76273 + 1.04354I 2.78842 1.15879I
u = 0.922328 0.410149I
a = 0.097023 0.610902I
b = 0.922328 0.410149I
1.76273 1.04354I 2.78842 + 1.15879I
u = 0.299279 + 0.864422I
a = 0.725338 + 0.593270I
b = 0.299279 + 0.864422I
5.58807 + 2.35049I 13.53566 3.60952I
u = 0.299279 0.864422I
a = 0.725338 0.593270I
b = 0.299279 0.864422I
5.58807 2.35049I 13.53566 + 3.60952I
u = 0.935316 + 0.630010I
a = 0.525722 + 0.984674I
b = 0.935316 + 0.630010I
2.13851 + 0.27818I 1.57258 + 0.84514I
u = 0.935316 0.630010I
a = 0.525722 0.984674I
b = 0.935316 0.630010I
2.13851 0.27818I 1.57258 0.84514I
u = 0.864210 + 0.035102I
a = 0.89308 + 1.80124I
b = 0.864210 + 0.035102I
4.69963 + 7.70569I 1.03497 7.90507I
u = 0.864210 0.035102I
a = 0.89308 1.80124I
b = 0.864210 0.035102I
4.69963 7.70569I 1.03497 + 7.90507I
u = 0.826242 + 0.780318I
a = 0.848642 + 0.882375I
b = 0.826242 + 0.780318I
0.40114 10.64020I 4.95980 + 10.11213I
u = 0.826242 0.780318I
a = 0.848642 0.882375I
b = 0.826242 0.780318I
0.40114 + 10.64020I 4.95980 10.11213I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.819203 + 0.976775I
a = 0.346065 + 0.826042I
b = 0.819203 + 0.976775I
3.89495 2.33301I 11.16071 + 2.50399I
u = 0.819203 0.976775I
a = 0.346065 0.826042I
b = 0.819203 0.976775I
3.89495 + 2.33301I 11.16071 2.50399I
u = 0.650261 + 0.049079I
a = 0.38648 + 2.74023I
b = 0.650261 + 0.049079I
6.12689 + 2.86646I 4.56371 2.58319I
u = 0.650261 0.049079I
a = 0.38648 2.74023I
b = 0.650261 0.049079I
6.12689 2.86646I 4.56371 + 2.58319I
u = 1.27254 + 0.88593I
a = 0.346542 + 0.895806I
b = 1.27254 + 0.88593I
8.44383 + 4.90113I 0.70738 1.64116I
u = 1.27254 0.88593I
a = 0.346542 0.895806I
b = 1.27254 0.88593I
8.44383 4.90113I 0.70738 + 1.64116I
u = 1.29108 + 0.99217I
a = 0.262717 + 0.934110I
b = 1.29108 + 0.99217I
5.2789 17.4106I 3.33834 + 9.88959I
u = 1.29108 0.99217I
a = 0.262717 0.934110I
b = 1.29108 0.99217I
5.2789 + 17.4106I 3.33834 9.88959I
u = 0.216670
a = 2.36478
b = 0.216670
0.903842 11.0550
6
II. I
u
2
= h4.05 × 10
223
u
67
+ 3.31 × 10
224
u
66
+ · · · + 4.65 × 10
224
b 5.28 ×
10
226
, 2.92 × 10
228
u
67
+ 2.09 × 10
229
u
66
+ · · · + 5.97 × 10
227
a 5.78 ×
10
230
, u
68
+ 7u
67
+ · · · + 375u + 257i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
4
=
4.88839u
67
34.9634u
66
+ ··· + 4825.34u + 967.944
0.0871501u
67
0.712125u
66
+ ··· + 396.084u + 113.654
a
3
=
4.80124u
67
34.2513u
66
+ ··· + 4429.26u + 854.290
0.0871501u
67
0.712125u
66
+ ··· + 396.084u + 113.654
a
9
=
7.99115u
67
60.4866u
66
+ ··· + 10430.3u + 3443.31
1.61940u
67
+ 12.4687u
66
+ ··· 2290.63u 756.650
a
2
=
6.77651u
67
48.1052u
66
+ ··· + 6300.23u + 1133.09
0.666031u
67
+ 4.36174u
66
+ ··· 121.691u + 106.711
a
7
=
4.48948u
67
33.7015u
66
+ ··· + 5341.98u + 1665.92
1.88227u
67
+ 14.3164u
66
+ ··· 2795.65u 1020.74
a
5
=
1.28662u
67
+ 6.44767u
66
+ ··· 34.9011u + 812.874
0.546402u
67
+ 5.09202u
66
+ ··· 1326.15u 757.561
a
6
=
4.16324u
67
34.1080u
66
+ ··· + 8461.50u + 3399.72
0.717867u
67
+ 6.15447u
66
+ ··· 1764.97u 755.279
a
10
=
5.80661u
67
43.0967u
66
+ ··· + 4592.48u + 1354.29
2.28558u
67
+ 17.7608u
66
+ ··· 2796.80u 1065.18
a
10
=
5.80661u
67
43.0967u
66
+ ··· + 4592.48u + 1354.29
2.28558u
67
+ 17.7608u
66
+ ··· 2796.80u 1065.18
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.644686u
67
+ 6.72660u
66
+ ··· 1138.68u 1495.39
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
9
u
68
u
67
+ ··· 12u + 1
c
2
, c
10
u
68
+ 25u
67
+ ··· + 60u + 1
c
3
, c
11
u
68
+ 7u
67
+ ··· + 375u + 257
c
4
, c
7
(u
34
+ 5u
33
+ ··· + 34u + 5)
2
c
8
(u
34
+ 9u
33
+ ··· + 4u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
y
68
25y
67
+ ··· 60y + 1
c
2
, c
10
y
68
+ 39y
67
+ ··· 600y + 1
c
3
, c
11
y
68
15y
67
+ ··· 2055275y + 66049
c
4
, c
7
(y
34
+ 29y
33
+ ··· 606y + 25)
2
c
8
(y
34
7y
33
+ ··· 22y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.935366 + 0.409909I
a = 0.174120 0.076305I
b = 0.935366 0.409909I
2.60763 0
u = 0.935366 0.409909I
a = 0.174120 + 0.076305I
b = 0.935366 + 0.409909I
2.60763 0
u = 0.654321 + 0.803747I
a = 0.383222 0.470738I
b = 0.654321 0.803747I
0.823819 0
u = 0.654321 0.803747I
a = 0.383222 + 0.470738I
b = 0.654321 + 0.803747I
0.823819 0
u = 0.086992 + 0.928184I
a = 1.49441 0.34424I
b = 0.718586 0.099000I
4.05974 + 3.04464I 5.00000 5.02705I
u = 0.086992 0.928184I
a = 1.49441 + 0.34424I
b = 0.718586 + 0.099000I
4.05974 3.04464I 5.00000 + 5.02705I
u = 0.888058 + 0.145938I
a = 0.362458 + 1.265120I
b = 1.096870 + 0.603105I
1.66267 + 2.38839I 5.00000 3.92268I
u = 0.888058 0.145938I
a = 0.362458 1.265120I
b = 1.096870 0.603105I
1.66267 2.38839I 5.00000 + 3.92268I
u = 0.885212 + 0.660115I
a = 0.747811 0.890107I
b = 0.786877 0.792245I
1.50330 5.20280I 0
u = 0.885212 0.660115I
a = 0.747811 + 0.890107I
b = 0.786877 + 0.792245I
1.50330 + 5.20280I 0
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.645959 + 0.609538I
a = 0.819920 0.300054I
b = 0.237861 0.469376I
1.64111 0.20863I 8.20722 + 0.I
u = 0.645959 0.609538I
a = 0.819920 + 0.300054I
b = 0.237861 + 0.469376I
1.64111 + 0.20863I 8.20722 + 0.I
u = 0.786877 + 0.792245I
a = 0.601596 0.979699I
b = 0.885212 0.660115I
1.50330 + 5.20280I 0
u = 0.786877 0.792245I
a = 0.601596 + 0.979699I
b = 0.885212 + 0.660115I
1.50330 5.20280I 0
u = 1.027720 + 0.439350I
a = 0.144640 0.772915I
b = 0.720497 0.909017I
0.25133 4.16817I 0
u = 1.027720 0.439350I
a = 0.144640 + 0.772915I
b = 0.720497 + 0.909017I
0.25133 + 4.16817I 0
u = 0.695237 + 0.876261I
a = 0.463175 + 0.146177I
b = 1.029460 + 0.540394I
1.12918 + 5.12471I 0
u = 0.695237 0.876261I
a = 0.463175 0.146177I
b = 1.029460 0.540394I
1.12918 5.12471I 0
u = 0.720497 + 0.909017I
a = 0.232294 0.721216I
b = 1.027720 0.439350I
0.25133 + 4.16817I 0
u = 0.720497 0.909017I
a = 0.232294 + 0.721216I
b = 1.027720 + 0.439350I
0.25133 4.16817I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.029460 + 0.540394I
a = 0.221154 + 0.411620I
b = 0.695237 + 0.876261I
1.12918 + 5.12471I 0
u = 1.029460 0.540394I
a = 0.221154 0.411620I
b = 0.695237 0.876261I
1.12918 5.12471I 0
u = 0.829237 + 0.028303I
a = 0.69769 2.02660I
b = 0.597312 0.062789I
5.57461 2.65210I 3.99824 + 1.76358I
u = 0.829237 0.028303I
a = 0.69769 + 2.02660I
b = 0.597312 + 0.062789I
5.57461 + 2.65210I 3.99824 1.76358I
u = 0.750141 + 0.908115I
a = 0.606651 0.697727I
b = 1.56205 0.58113I
0.20559 + 3.65421I 0
u = 0.750141 0.908115I
a = 0.606651 + 0.697727I
b = 1.56205 + 0.58113I
0.20559 3.65421I 0
u = 0.765342 + 0.905693I
a = 0.601112 + 0.874358I
b = 1.57861 + 0.95684I
0.84333 8.53070I 0
u = 0.765342 0.905693I
a = 0.601112 0.874358I
b = 1.57861 0.95684I
0.84333 + 8.53070I 0
u = 0.735761 + 0.292287I
a = 0.66785 + 1.40228I
b = 1.73061 + 1.32358I
6.19582 1.01878I 4.58808 1.16723I
u = 0.735761 0.292287I
a = 0.66785 1.40228I
b = 1.73061 1.32358I
6.19582 + 1.01878I 4.58808 + 1.16723I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.711895 + 0.258153I
a = 0.58405 1.65179I
b = 1.45720 1.66487I
6.41329 4.23932I 5.89514 + 7.96165I
u = 0.711895 0.258153I
a = 0.58405 + 1.65179I
b = 1.45720 + 1.66487I
6.41329 + 4.23932I 5.89514 7.96165I
u = 1.096870 + 0.603105I
a = 0.057508 + 0.944434I
b = 0.888058 + 0.145938I
1.66267 + 2.38839I 0
u = 1.096870 0.603105I
a = 0.057508 0.944434I
b = 0.888058 0.145938I
1.66267 2.38839I 0
u = 0.869088 + 0.901011I
a = 0.563739 + 0.260530I
b = 0.476889 + 0.496046I
3.86295 4.69165I 0
u = 0.869088 0.901011I
a = 0.563739 0.260530I
b = 0.476889 0.496046I
3.86295 + 4.69165I 0
u = 0.718586 + 0.099000I
a = 0.00780 1.97090I
b = 0.086992 0.928184I
4.05974 3.04464I 8.15642 + 5.02705I
u = 0.718586 0.099000I
a = 0.00780 + 1.97090I
b = 0.086992 + 0.928184I
4.05974 + 3.04464I 8.15642 5.02705I
u = 0.476889 + 0.496046I
a = 1.024820 + 0.475673I
b = 0.869088 + 0.901011I
3.86295 4.69165I 11.49179 + 4.07331I
u = 0.476889 0.496046I
a = 1.024820 0.475673I
b = 0.869088 0.901011I
3.86295 + 4.69165I 11.49179 4.07331I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.636750 + 0.128166I
a = 0.04371 1.98902I
b = 0.66517 1.83516I
4.76682 3.09252I 3.99662 + 6.42171I
u = 0.636750 0.128166I
a = 0.04371 + 1.98902I
b = 0.66517 + 1.83516I
4.76682 + 3.09252I 3.99662 6.42171I
u = 0.614911 + 0.115807I
a = 0.08677 + 1.88600I
b = 1.27800 + 1.84734I
3.65105 + 8.06945I 2.24961 10.45643I
u = 0.614911 0.115807I
a = 0.08677 1.88600I
b = 1.27800 1.84734I
3.65105 8.06945I 2.24961 + 10.45643I
u = 0.609867 + 0.075529I
a = 0.41718 + 1.72597I
b = 1.219630 + 0.681568I
0.49208 + 2.14474I 4.47534 2.22851I
u = 0.609867 0.075529I
a = 0.41718 1.72597I
b = 1.219630 0.681568I
0.49208 2.14474I 4.47534 + 2.22851I
u = 1.219630 + 0.681568I
a = 0.301017 0.720678I
b = 0.609867 + 0.075529I
0.49208 + 2.14474I 0
u = 1.219630 0.681568I
a = 0.301017 + 0.720678I
b = 0.609867 0.075529I
0.49208 2.14474I 0
u = 0.597312 + 0.062789I
a = 0.76391 2.86073I
b = 0.829237 0.028303I
5.57461 + 2.65210I 3.99824 1.76358I
u = 0.597312 0.062789I
a = 0.76391 + 2.86073I
b = 0.829237 + 0.028303I
5.57461 2.65210I 3.99824 + 1.76358I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.237861 + 0.469376I
a = 1.13072 0.94503I
b = 0.645959 0.609538I
1.64111 + 0.20863I 8.20722 + 0.26692I
u = 0.237861 0.469376I
a = 1.13072 + 0.94503I
b = 0.645959 + 0.609538I
1.64111 0.20863I 8.20722 0.26692I
u = 1.21547 + 0.86314I
a = 0.310422 0.988272I
b = 1.32582 1.03680I
7.06234 11.08520I 0
u = 1.21547 0.86314I
a = 0.310422 + 0.988272I
b = 1.32582 + 1.03680I
7.06234 + 11.08520I 0
u = 1.56205 + 0.58113I
a = 0.124351 0.641489I
b = 0.750141 0.908115I
0.20559 3.65421I 0
u = 1.56205 0.58113I
a = 0.124351 + 0.641489I
b = 0.750141 + 0.908115I
0.20559 + 3.65421I 0
u = 1.32582 + 1.03680I
a = 0.315066 0.861723I
b = 1.21547 0.86314I
7.06234 + 11.08520I 0
u = 1.32582 1.03680I
a = 0.315066 + 0.861723I
b = 1.21547 + 0.86314I
7.06234 11.08520I 0
u = 1.57861 + 0.95684I
a = 0.187050 + 0.655406I
b = 0.765342 + 0.905693I
0.84333 8.53070I 0
u = 1.57861 0.95684I
a = 0.187050 0.655406I
b = 0.765342 0.905693I
0.84333 + 8.53070I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.66517 + 1.83516I
a = 0.652341 + 0.112700I
b = 0.636750 0.128166I
4.76682 + 3.09252I 0
u = 0.66517 1.83516I
a = 0.652341 0.112700I
b = 0.636750 + 0.128166I
4.76682 3.09252I 0
u = 1.73061 + 1.32358I
a = 0.371829 + 0.424591I
b = 0.735761 + 0.292287I
6.19582 1.01878I 0
u = 1.73061 1.32358I
a = 0.371829 0.424591I
b = 0.735761 0.292287I
6.19582 + 1.01878I 0
u = 1.45720 + 1.66487I
a = 0.448039 0.398539I
b = 0.711895 0.258153I
6.41329 + 4.23932I 0
u = 1.45720 1.66487I
a = 0.448039 + 0.398539I
b = 0.711895 + 0.258153I
6.41329 4.23932I 0
u = 1.27800 + 1.84734I
a = 0.489733 0.191687I
b = 0.614911 + 0.115807I
3.65105 + 8.06945I 0
u = 1.27800 1.84734I
a = 0.489733 + 0.191687I
b = 0.614911 0.115807I
3.65105 8.06945I 0
16
III. I
u
3
= hb + u, u
7
+ u
6
2u
4
+ u
2
+ a + 2u 1, u
8
u
6
u
5
+ 2u
4
u + 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
4
=
u
7
u
6
+ 2u
4
u
2
2u + 1
u
a
3
=
u
7
u
6
+ 2u
4
u
2
u + 1
u
a
9
=
u
7
u
6
+ u
4
u
7
u
5
u
4
+ u
3
+ u 1
a
2
=
2u
7
u
6
+ u
5
+ 3u
4
u
3
u
2
2u + 2
u
5
+ u
3
2u
a
7
=
u
7
u
6
2u
5
u
4
+ 3u
3
2
u
7
u
5
u
4
+ 2u
3
+ u 1
a
5
=
u
7
+ u
6
u
5
3u
4
+ 2u
2
+ u 1
u
6
+ u
5
u
4
2u
3
+ u
2
+ u
a
6
=
u
7
2u
5
2u
4
+ 2u
3
+ 2u
2
1
u
7
+ u
6
u
5
2u
4
+ u
3
+ u
2
a
10
=
u + 1
u
7
u
5
+ u
3
u
2
+ 1
a
10
=
u + 1
u
7
u
5
+ u
3
u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 3u
6
+ 6u
5
+ 2u
4
9u
3
u
2
u 1
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
8
2u
6
+ 3u
4
+ u
3
2u
2
u + 1
c
2
, c
10
u
8
+ 4u
7
+ 10u
6
+ 16u
5
+ 19u
4
+ 17u
3
+ 12u
2
+ 5u + 1
c
3
, c
11
u
8
u
6
u
5
+ 2u
4
u + 1
c
4
u
8
u
7
+ 4u
6
4u
5
+ 6u
4
5u
3
+ 5u
2
2u + 1
c
6
, c
9
u
8
2u
6
+ 3u
4
u
3
2u
2
+ u + 1
c
7
u
8
+ u
7
+ 4u
6
+ 4u
5
+ 6u
4
+ 5u
3
+ 5u
2
+ 2u + 1
c
8
u
8
+ 3u
7
+ 3u
6
+ u
5
u
4
u
3
+ 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
y
8
4y
7
+ 10y
6
16y
5
+ 19y
4
17y
3
+ 12y
2
5y + 1
c
2
, c
10
y
8
+ 4y
7
+ 10y
6
+ 12y
5
+ 19y
4
+ 27y
3
+ 12y
2
y + 1
c
3
, c
11
y
8
2y
7
+ 5y
6
5y
5
+ 6y
4
4y
3
+ 4y
2
y + 1
c
4
, c
7
y
8
+ 7y
7
+ 20y
6
+ 32y
5
+ 34y
4
+ 27y
3
+ 17y
2
+ 6y + 1
c
8
y
8
3y
7
+ y
6
y
5
+ 5y
4
+ 5y
3
2y
2
+ 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.968184 + 0.381145I
a = 0.382665 0.800987I
b = 0.968184 0.381145I
0.794315 + 0.862931I 6.95751 0.59355I
u = 0.968184 0.381145I
a = 0.382665 + 0.800987I
b = 0.968184 + 0.381145I
0.794315 0.862931I 6.95751 + 0.59355I
u = 0.534261 + 0.758391I
a = 1.207080 0.334530I
b = 0.534261 0.758391I
2.78226 + 7.31144I 4.74402 5.01155I
u = 0.534261 0.758391I
a = 1.207080 + 0.334530I
b = 0.534261 + 0.758391I
2.78226 7.31144I 4.74402 + 5.01155I
u = 0.585320 + 0.576383I
a = 1.24580 1.30467I
b = 0.585320 0.576383I
5.20723 + 3.67399I 1.42456 6.52580I
u = 0.585320 0.576383I
a = 1.24580 + 1.30467I
b = 0.585320 + 0.576383I
5.20723 3.67399I 1.42456 + 6.52580I
u = 1.019240 + 0.742714I
a = 0.156057 0.473494I
b = 1.019240 0.742714I
2.20407 5.83988I 6.87391 + 7.08087I
u = 1.019240 0.742714I
a = 0.156057 + 0.473494I
b = 1.019240 + 0.742714I
2.20407 + 5.83988I 6.87391 7.08087I
20
IV. I
u
4
= h−3u
7
2u
6
+ 2u
5
4u
4
+ 3u
2
+ b 7u + 4, 4u
7
3u
6
+ · · · +
a + 5, u
8
u
6
+ 2u
5
u
4
u
3
+ 3u
2
3u + 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
4
=
4u
7
+ 3u
6
2u
5
+ 6u
4
+ u
3
3u
2
+ 9u 5
3u
7
+ 2u
6
2u
5
+ 4u
4
3u
2
+ 7u 4
a
3
=
u
7
+ u
6
+ 2u
4
+ u
3
+ 2u 1
3u
7
+ 2u
6
2u
5
+ 4u
4
3u
2
+ 7u 4
a
9
=
3u
7
+ 2u
6
2u
5
+ 4u
4
3u
2
+ 7u 4
u
7
+ u
6
+ 2u
4
u
2
+ 3u 2
a
2
=
5u
7
+ 4u
6
2u
5
+ 8u
4
+ u
3
4u
2
+ 11u 6
u
7
+ u
6
+ u
4
u
2
+ 2u 1
a
7
=
5u
7
+ 3u
6
3u
5
+ 8u
4
u
3
5u
2
+ 12u 9
u
7
u
5
+ 2u
4
u
3
u
2
+ 4u 3
a
5
=
u
6
u
5
2u
3
u
2
+ u 2
u
7
u
5
+ 2u
4
u
3
2u
2
+ 3u 2
a
6
=
3u
7
2u
6
+ 2u
5
5u
4
u
3
+ 3u
2
7u + 3
u
3
+ u 1
a
10
=
u + 1
u
4
u
2
+ u
a
10
=
u + 1
u
4
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
7
6u
6
+ 10u
5
15u
4
+ u
3
+ 11u
2
25u + 11
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
8
2u
6
u
5
+ 3u
4
+ u
3
2u
2
+ 1
c
2
, c
10
u
8
+ 4u
7
+ 10u
6
+ 17u
5
+ 21u
4
+ 17u
3
+ 10u
2
+ 4u + 1
c
3
, c
11
u
8
u
6
+ 2u
5
u
4
u
3
+ 3u
2
3u + 1
c
4
(u
4
+ 2u
2
+ u + 1)
2
c
6
, c
9
u
8
2u
6
+ u
5
+ 3u
4
u
3
2u
2
+ 1
c
7
(u
4
+ 2u
2
u + 1)
2
c
8
(u
4
u
3
+ 1)
2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
y
8
4y
7
+ 10y
6
17y
5
+ 21y
4
17y
3
+ 10y
2
4y + 1
c
2
, c
10
y
8
+ 4y
7
+ 6y
6
+ 15y
5
+ 33y
4
+ 15y
3
+ 6y
2
+ 4y + 1
c
3
, c
11
y
8
2y
7
y
6
+ 4y
5
+ y
4
+ 3y
3
+ y
2
3y + 1
c
4
, c
7
(y
4
+ 4y
3
+ 6y
2
+ 3y + 1)
2
c
8
(y
4
y
3
+ 2y
2
+ 1)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.655106 + 0.740977I
a = 0.243445 + 0.679234I
b = 1.38224 + 0.31096I
1.13814 + 3.38562I 9.49848 3.42631I
u = 0.655106 0.740977I
a = 0.243445 0.679234I
b = 1.38224 0.31096I
1.13814 3.38562I 9.49848 + 3.42631I
u = 0.065777 + 1.058430I
a = 1.258400 0.403038I
b = 0.661359 + 0.124331I
4.42801 + 2.37936I 2.50152 + 3.27706I
u = 0.065777 1.058430I
a = 1.258400 + 0.403038I
b = 0.661359 0.124331I
4.42801 2.37936I 2.50152 3.27706I
u = 0.661359 + 0.124331I
a = 0.87507 + 1.88950I
b = 0.065777 + 1.058430I
4.42801 2.37936I 2.50152 3.27706I
u = 0.661359 0.124331I
a = 0.87507 1.88950I
b = 0.065777 1.058430I
4.42801 + 2.37936I 2.50152 + 3.27706I
u = 1.38224 + 0.31096I
a = 0.139876 + 0.483891I
b = 0.655106 + 0.740977I
1.13814 3.38562I 9.49848 + 3.42631I
u = 1.38224 0.31096I
a = 0.139876 0.483891I
b = 0.655106 0.740977I
1.13814 + 3.38562I 9.49848 3.42631I
24
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
8
2u
6
+ 3u
4
+ u
3
2u
2
u + 1)(u
8
2u
6
u
5
+ 3u
4
+ u
3
2u
2
+ 1)
· (u
19
4u
17
+ ··· u + 1)(u
68
u
67
+ ··· 12u + 1)
c
2
, c
10
(u
8
+ 4u
7
+ 10u
6
+ 16u
5
+ 19u
4
+ 17u
3
+ 12u
2
+ 5u + 1)
· (u
8
+ 4u
7
+ 10u
6
+ 17u
5
+ 21u
4
+ 17u
3
+ 10u
2
+ 4u + 1)
· (u
19
+ 8u
18
+ ··· + 5u + 1)(u
68
+ 25u
67
+ ··· + 60u + 1)
c
3
, c
11
(u
8
u
6
u
5
+ 2u
4
u + 1)(u
8
u
6
+ 2u
5
u
4
u
3
+ 3u
2
3u + 1)
· (u
19
3u
17
+ ··· + 5u + 1)(u
68
+ 7u
67
+ ··· + 375u + 257)
c
4
(u
4
+ 2u
2
+ u + 1)
2
(u
8
u
7
+ 4u
6
4u
5
+ 6u
4
5u
3
+ 5u
2
2u + 1)
· (u
19
12u
18
+ ··· 224u + 32)(u
34
+ 5u
33
+ ··· + 34u + 5)
2
c
6
, c
9
(u
8
2u
6
+ 3u
4
u
3
2u
2
+ u + 1)(u
8
2u
6
+ u
5
+ 3u
4
u
3
2u
2
+ 1)
· (u
19
4u
17
+ ··· u + 1)(u
68
u
67
+ ··· 12u + 1)
c
7
(u
4
+ 2u
2
u + 1)
2
(u
8
+ u
7
+ 4u
6
+ 4u
5
+ 6u
4
+ 5u
3
+ 5u
2
+ 2u + 1)
· (u
19
12u
18
+ ··· 224u + 32)(u
34
+ 5u
33
+ ··· + 34u + 5)
2
c
8
(u
4
u
3
+ 1)
2
(u
8
+ 3u
7
+ 3u
6
+ u
5
u
4
u
3
+ 1)
· (u
19
18u
18
+ ··· 1184u + 192)(u
34
+ 9u
33
+ ··· + 4u + 1)
2
25
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
(y
8
4y
7
+ 10y
6
17y
5
+ 21y
4
17y
3
+ 10y
2
4y + 1)
· (y
8
4y
7
+ 10y
6
16y
5
+ 19y
4
17y
3
+ 12y
2
5y + 1)
· (y
19
8y
18
+ ··· + 5y 1)(y
68
25y
67
+ ··· 60y + 1)
c
2
, c
10
(y
8
+ 4y
7
+ 6y
6
+ 15y
5
+ 33y
4
+ 15y
3
+ 6y
2
+ 4y + 1)
· (y
8
+ 4y
7
+ 10y
6
+ 12y
5
+ 19y
4
+ 27y
3
+ 12y
2
y + 1)
· (y
19
+ 12y
18
+ ··· 23y 1)(y
68
+ 39y
67
+ ··· 600y + 1)
c
3
, c
11
(y
8
2y
7
y
6
+ 4y
5
+ y
4
+ 3y
3
+ y
2
3y + 1)
· (y
8
2y
7
+ 5y
6
5y
5
+ 6y
4
4y
3
+ 4y
2
y + 1)
· (y
19
6y
18
+ ··· + 29y 1)(y
68
15y
67
+ ··· 2055275y + 66049)
c
4
, c
7
(y
4
+ 4y
3
+ 6y
2
+ 3y + 1)
2
· (y
8
+ 7y
7
+ 20y
6
+ 32y
5
+ 34y
4
+ 27y
3
+ 17y
2
+ 6y + 1)
· (y
19
+ 12y
18
+ ··· + 1536y 1024)(y
34
+ 29y
33
+ ··· 606y + 25)
2
c
8
(y
4
y
3
+ 2y
2
+ 1)
2
(y
8
3y
7
+ y
6
y
5
+ 5y
4
+ 5y
3
2y
2
+ 1)
· (y
19
4y
18
+ ··· + 50176y 36864)(y
34
7y
33
+ ··· 22y + 1)
2
26