11a
203
(K11a
203
)
A knot diagram
1
Linearized knot diagam
6 1 9 10 8 2 11 3 4 5 7
Solving Sequence
2,7
6 1 3 11 8 9 5 10 4
c
6
c
1
c
2
c
11
c
7
c
8
c
5
c
10
c
4
c
3
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
30
8u
28
+ ··· + u + 1i
I
u
2
= hu 1i
* 2 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
30
8u
28
+ · · · + u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
11
=
u
3
u
3
+ u
a
8
=
u
6
u
4
+ 1
u
6
+ 2u
4
u
2
a
9
=
u
14
+ 3u
12
4u
10
+ u
8
+ 2u
6
2u
4
+ 1
u
16
4u
14
+ 8u
12
8u
10
+ 4u
8
a
5
=
u
14
+ 3u
12
4u
10
+ u
8
+ 2u
6
2u
4
+ 1
u
14
4u
12
+ 7u
10
6u
8
+ 2u
6
u
2
a
10
=
u
25
+ 6u
23
+ ··· 3u
5
+ u
u
25
7u
23
+ ··· 2u
3
+ u
a
4
=
u
25
6u
23
+ ··· + 3u
5
u
u
27
+ 7u
25
+ ··· u
3
+ u
a
4
=
u
25
6u
23
+ ··· + 3u
5
u
u
27
+ 7u
25
+ ··· u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
29
+ 32u
27
4u
26
124u
25
+ 28u
24
+ 284u
23
96u
22
400u
21
+ 192u
20
+ 300u
19
232u
18
4u
17
+ 140u
16
224u
15
+ 12u
14
+ 188u
13
84u
12
28u
11
+ 40u
10
52u
9
+ 12u
8
+ 32u
7
24u
6
8u
5
+ 8u
4
+ 4u
3
+ 4u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
30
8u
28
+ ··· + u + 1
c
2
u
30
+ 16u
29
+ ··· + 3u + 1
c
3
, c
4
, c
8
c
9
, c
10
u
30
20u
28
+ ··· + 3u + 1
c
5
u
30
6u
29
+ ··· + 23u + 41
c
7
, c
11
u
30
3u
29
+ ··· + 37u 11
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
30
16y
29
+ ··· 3y + 1
c
2
y
30
4y
29
+ ··· 7y + 1
c
3
, c
4
, c
8
c
9
, c
10
y
30
40y
29
+ ··· 3y + 1
c
5
y
30
16y
29
+ ··· 36527y + 1681
c
7
, c
11
y
30
+ 27y
29
+ ··· 3129y + 121
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.887519 + 0.482432I
1.82016 + 4.25744I 10.93711 7.73976I
u = 0.887519 0.482432I
1.82016 4.25744I 10.93711 + 7.73976I
u = 0.935013 + 0.538460I
10.87340 5.27966I 12.05604 + 5.65823I
u = 0.935013 0.538460I
10.87340 + 5.27966I 12.05604 5.65823I
u = 1.09884
14.6811 17.7740
u = 0.778482 + 0.436098I
1.00011 1.87364I 3.05909 + 5.26127I
u = 0.778482 0.436098I
1.00011 + 1.87364I 3.05909 5.26127I
u = 0.113847 + 0.839746I
15.0478 + 5.3499I 12.97012 2.66295I
u = 0.113847 0.839746I
15.0478 5.3499I 12.97012 + 2.66295I
u = 0.100894 + 0.796851I
5.17949 3.97369I 12.30033 + 4.02503I
u = 0.100894 0.796851I
5.17949 + 3.97369I 12.30033 4.02503I
u = 0.523957 + 0.596828I
9.71958 + 0.79768I 9.60193 + 0.22241I
u = 0.523957 0.596828I
9.71958 0.79768I 9.60193 0.22241I
u = 1.175620 + 0.433898I
4.54064 + 2.58760I 11.91074 + 0.31463I
u = 1.175620 0.433898I
4.54064 2.58760I 11.91074 0.31463I
u = 1.178600 + 0.472961I
4.25686 5.88582I 10.73071 + 7.02338I
u = 1.178600 0.472961I
4.25686 + 5.88582I 10.73071 7.02338I
u = 1.209450 + 0.403071I
9.06454 0.14928I 16.5343 0.4492I
u = 1.209450 0.403071I
9.06454 + 0.14928I 16.5343 + 0.4492I
u = 0.064904 + 0.715291I
1.08394 + 1.47244I 7.45106 4.26447I
u = 0.064904 0.715291I
1.08394 1.47244I 7.45106 + 4.26447I
u = 0.551842 + 0.441212I
0.931280 0.302386I 8.66690 + 0.70064I
u = 0.551842 0.441212I
0.931280 + 0.302386I 8.66690 0.70064I
u = 1.236340 + 0.392586I
19.1575 1.1230I 17.1562 0.4196I
u = 1.236340 0.392586I
19.1575 + 1.1230I 17.1562 + 0.4196I
u = 1.198880 + 0.495938I
8.40726 + 8.70507I 15.2295 7.1454I
u = 1.198880 0.495938I
8.40726 8.70507I 15.2295 + 7.1454I
u = 1.212990 + 0.509772I
18.3208 10.2613I 15.9531 + 5.7696I
u = 1.212990 0.509772I
18.3208 + 10.2613I 15.9531 5.7696I
u = 0.633476
0.803448 13.1110
5
II. I
u
2
= hu 1i
(i) Arc colorings
a
2
=
0
1
a
7
=
1
0
a
6
=
1
1
a
1
=
1
0
a
3
=
1
1
a
11
=
1
0
a
8
=
1
0
a
9
=
0
1
a
5
=
0
1
a
10
=
1
1
a
4
=
1
0
a
4
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
8
, c
9
c
10
u 1
c
2
, c
5
u + 1
c
7
, c
11
u
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
8
, c
9
, c
10
y 1
c
7
, c
11
y
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
4.93480 18.0000
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
(u 1)(u
30
8u
28
+ ··· + u + 1)
c
2
(u + 1)(u
30
+ 16u
29
+ ··· + 3u + 1)
c
3
, c
4
, c
8
c
9
, c
10
(u 1)(u
30
20u
28
+ ··· + 3u + 1)
c
5
(u + 1)(u
30
6u
29
+ ··· + 23u + 41)
c
7
, c
11
u(u
30
3u
29
+ ··· + 37u 11)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y 1)(y
30
16y
29
+ ··· 3y + 1)
c
2
(y 1)(y
30
4y
29
+ ··· 7y + 1)
c
3
, c
4
, c
8
c
9
, c
10
(y 1)(y
30
40y
29
+ ··· 3y + 1)
c
5
(y 1)(y
30
16y
29
+ ··· 36527y + 1681)
c
7
, c
11
y(y
30
+ 27y
29
+ ··· 3129y + 121)
11