11a
204
(K11a
204
)
A knot diagram
1
Linearized knot diagam
6 1 10 9 8 2 11 3 4 5 7
Solving Sequence
2,7
6 1 3 11 8 9 5 4 10
c
6
c
1
c
2
c
11
c
7
c
8
c
5
c
4
c
10
c
3
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
50
u
49
+ ··· + u 1i
* 1 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
50
u
49
+ · · · + u 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
11
=
u
3
u
3
+ u
a
8
=
u
6
u
4
+ 1
u
6
+ 2u
4
u
2
a
9
=
u
14
+ 3u
12
4u
10
+ u
8
+ 2u
6
2u
4
+ 1
u
16
4u
14
+ 8u
12
8u
10
+ 4u
8
a
5
=
u
14
+ 3u
12
4u
10
+ u
8
+ 2u
6
2u
4
+ 1
u
14
4u
12
+ 7u
10
6u
8
+ 2u
6
u
2
a
4
=
u
44
+ 11u
42
+ ··· u
2
+ 1
u
46
12u
44
+ ··· + 2u
6
u
2
a
10
=
u
25
+ 6u
23
+ ··· 3u
5
+ u
u
25
7u
23
+ ··· 2u
3
+ u
a
10
=
u
25
+ 6u
23
+ ··· 3u
5
+ u
u
25
7u
23
+ ··· 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
48
+ 52u
46
+ ··· + 8u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
50
u
49
+ ··· + u 1
c
2
u
50
+ 27u
49
+ ··· + 3u + 1
c
3
, c
4
, c
9
u
50
+ u
49
+ ··· 3u 1
c
5
u
50
7u
49
+ ··· 111u + 37
c
7
, c
11
u
50
3u
49
+ ··· + u + 1
c
8
, c
10
u
50
u
49
+ ··· 45u 17
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
50
27y
49
+ ··· 3y + 1
c
2
y
50
7y
49
+ ··· 7y + 1
c
3
, c
4
, c
9
y
50
+ 41y
49
+ ··· 3y + 1
c
5
y
50
11y
49
+ ··· 28823y + 1369
c
7
, c
11
y
50
+ 41y
49
+ ··· 111y + 1
c
8
, c
10
y
50
35y
49
+ ··· + 457y + 289
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.898377 + 0.505512I
2.14014 + 4.60582I 9.82761 7.01636I
u = 0.898377 0.505512I
2.14014 4.60582I 9.82761 + 7.01636I
u = 0.886274 + 0.537129I
2.36766 8.44259I 4.56565 + 8.69974I
u = 0.886274 0.537129I
2.36766 + 8.44259I 4.56565 8.69974I
u = 0.940835 + 0.435517I
1.03261 1.03580I 6.91855 + 2.91618I
u = 0.940835 0.435517I
1.03261 + 1.03580I 6.91855 2.91618I
u = 1.04249
5.57110 16.4420
u = 1.048370 + 0.049358I
1.64759 + 4.00369I 11.91063 3.67666I
u = 1.048370 0.049358I
1.64759 4.00369I 11.91063 + 3.67666I
u = 0.764066 + 0.531630I
6.63211 + 2.15686I 0.57370 3.89945I
u = 0.764066 0.531630I
6.63211 2.15686I 0.57370 + 3.89945I
u = 0.774496 + 0.423862I
0.95587 1.83688I 2.97268 + 5.52059I
u = 0.774496 0.423862I
0.95587 + 1.83688I 2.97268 5.52059I
u = 0.131214 + 0.816301I
1.25862 + 8.74450I 6.26482 5.70892I
u = 0.131214 0.816301I
1.25862 8.74450I 6.26482 + 5.70892I
u = 0.113334 + 0.813002I
5.75677 4.53837I 10.90083 + 3.52404I
u = 0.113334 0.813002I
5.75677 + 4.53837I 10.90083 3.52404I
u = 0.600001 + 0.552718I
3.16690 + 4.05720I 2.39559 2.41761I
u = 0.600001 0.552718I
3.16690 4.05720I 2.39559 + 2.41761I
u = 0.088090 + 0.807114I
2.52256 + 0.29931I 7.87191 + 0.33424I
u = 0.088090 0.807114I
2.52256 0.29931I 7.87191 0.33424I
u = 1.124710 + 0.394492I
0.834215 0.681511I 6.55623 + 0.I
u = 1.124710 0.394492I
0.834215 + 0.681511I 6.55623 + 0.I
u = 1.169100 + 0.434672I
4.41097 + 2.59787I 11.45875 + 0.I
u = 1.169100 0.434672I
4.41097 2.59787I 11.45875 + 0.I
u = 1.157340 + 0.497610I
1.58916 + 7.35454I 0
u = 1.157340 0.497610I
1.58916 7.35454I 0
u = 0.542490 + 0.497935I
1.186550 0.458750I 7.63805 + 0.36311I
u = 0.542490 0.497935I
1.186550 + 0.458750I 7.63805 0.36311I
u = 1.173630 + 0.470826I
4.14754 5.79334I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.173630 0.470826I
4.14754 + 5.79334I 0
u = 0.173744 + 0.706786I
4.42834 2.79951I 1.47445 + 3.26453I
u = 0.173744 0.706786I
4.42834 + 2.79951I 1.47445 3.26453I
u = 1.219870 + 0.382444I
5.33475 4.67917I 0
u = 1.219870 0.382444I
5.33475 + 4.67917I 0
u = 1.219490 + 0.394041I
9.75574 + 0.40809I 0
u = 1.219490 0.394041I
9.75574 0.40809I 0
u = 1.217770 + 0.408433I
6.41473 + 3.90979I 0
u = 1.217770 0.408433I
6.41473 3.90979I 0
u = 0.065064 + 0.701160I
1.00563 + 1.42365I 7.09664 4.59801I
u = 0.065064 0.701160I
1.00563 1.42365I 7.09664 + 4.59801I
u = 1.203910 + 0.493230I
5.81092 5.03608I 0
u = 1.203910 0.493230I
5.81092 + 5.03608I 0
u = 1.202290 + 0.504191I
8.97338 + 9.35305I 0
u = 1.202290 0.504191I
8.97338 9.35305I 0
u = 1.200010 + 0.511632I
4.4198 13.6080I 0
u = 1.200010 0.511632I
4.4198 + 13.6080I 0
u = 0.406824 + 0.539325I
2.56296 2.88378I 2.70702 + 3.08785I
u = 0.406824 0.539325I
2.56296 + 2.88378I 2.70702 3.08785I
u = 0.658085
0.823669 13.0660
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
50
u
49
+ ··· + u 1
c
2
u
50
+ 27u
49
+ ··· + 3u + 1
c
3
, c
4
, c
9
u
50
+ u
49
+ ··· 3u 1
c
5
u
50
7u
49
+ ··· 111u + 37
c
7
, c
11
u
50
3u
49
+ ··· + u + 1
c
8
, c
10
u
50
u
49
+ ··· 45u 17
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
50
27y
49
+ ··· 3y + 1
c
2
y
50
7y
49
+ ··· 7y + 1
c
3
, c
4
, c
9
y
50
+ 41y
49
+ ··· 3y + 1
c
5
y
50
11y
49
+ ··· 28823y + 1369
c
7
, c
11
y
50
+ 41y
49
+ ··· 111y + 1
c
8
, c
10
y
50
35y
49
+ ··· + 457y + 289
8