11a
208
(K11a
208
)
A knot diagram
1
Linearized knot diagam
7 1 11 10 9 2 6 3 4 5 8
Solving Sequence
2,7
1 3 6 8 9 5 11 4 10
c
1
c
2
c
6
c
7
c
8
c
5
c
11
c
3
c
10
c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
52
+ u
51
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 52 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
52
+ u
51
+ · · · + 2u 1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
1
=
1
u
2
a
3
=
u
2
+ 1
u
4
a
6
=
u
u
a
8
=
u
3
u
3
+ u
a
9
=
u
9
+ 2u
7
+ 3u
5
+ 2u
3
+ u
u
11
+ u
9
+ 2u
7
+ u
5
+ u
3
+ u
a
5
=
u
21
4u
19
+ ··· 2u
3
u
u
23
3u
21
+ ··· 2u
3
+ u
a
11
=
u
8
u
6
u
4
+ 1
u
8
+ 2u
6
+ 2u
4
+ 2u
2
a
4
=
u
20
+ 3u
18
+ 7u
16
+ 10u
14
+ 10u
12
+ 7u
10
+ u
8
2u
6
3u
4
u
2
+ 1
u
20
4u
18
10u
16
18u
14
23u
12
24u
10
18u
8
10u
6
3u
4
a
10
=
u
51
+ 8u
49
+ ··· + u
3
+ 2u
u
51
9u
49
+ ··· + u
3
+ u
a
10
=
u
51
+ 8u
49
+ ··· + u
3
+ 2u
u
51
9u
49
+ ··· + u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
50
+ 4u
49
+ ··· + 4u
2
+ 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
52
+ u
51
+ ··· + 2u 1
c
2
, c
7
u
52
+ 17u
51
+ ··· 6u + 1
c
3
, c
5
u
52
+ 3u
51
+ ··· + 37u + 16
c
4
, c
9
, c
10
u
52
u
51
+ ··· + 3u
2
1
c
8
u
52
+ u
51
+ ··· 28u 40
c
11
u
52
5u
51
+ ··· + 96u 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
52
+ 17y
51
+ ··· 6y + 1
c
2
, c
7
y
52
+ 37y
51
+ ··· 54y + 1
c
3
, c
5
y
52
+ 33y
51
+ ··· 2425y + 256
c
4
, c
9
, c
10
y
52
43y
51
+ ··· 6y + 1
c
8
y
52
7y
51
+ ··· 38704y + 1600
c
11
y
52
+ 5y
51
+ ··· + 5856y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.768826 + 0.671773I
2.57641 + 0.11774I 9.48504 + 0.88977I
u = 0.768826 0.671773I
2.57641 0.11774I 9.48504 0.88977I
u = 0.797976 + 0.676802I
0.37697 4.15655I 6.46155 + 2.97848I
u = 0.797976 0.676802I
0.37697 + 4.15655I 6.46155 2.97848I
u = 0.189335 + 0.934390I
3.08561 2.46256I 8.42989 + 4.48427I
u = 0.189335 0.934390I
3.08561 + 2.46256I 8.42989 4.48427I
u = 0.749484 + 0.734944I
3.28879 + 0.58865I 11.43703 2.08567I
u = 0.749484 0.734944I
3.28879 0.58865I 11.43703 + 2.08567I
u = 0.085244 + 1.047640I
3.32915 0.06069I 1.99003 0.27621I
u = 0.085244 1.047640I
3.32915 + 0.06069I 1.99003 + 0.27621I
u = 0.113059 + 1.052610I
6.59928 4.05816I 1.05392 + 4.39886I
u = 0.113059 1.052610I
6.59928 + 4.05816I 1.05392 4.39886I
u = 0.063300 + 0.938721I
2.09979 + 1.29128I 2.50126 5.46837I
u = 0.063300 0.938721I
2.09979 1.29128I 2.50126 + 5.46837I
u = 0.812741 + 0.682085I
4.28204 + 8.22013I 11.15083 4.69120I
u = 0.812741 0.682085I
4.28204 8.22013I 11.15083 + 4.69120I
u = 0.132755 + 1.056620I
2.13743 + 8.17751I 3.80777 6.73213I
u = 0.132755 1.056620I
2.13743 8.17751I 3.80777 + 6.73213I
u = 0.506635 + 0.944324I
0.02731 2.14885I 5.90152 + 0.32388I
u = 0.506635 0.944324I
0.02731 + 2.14885I 5.90152 0.32388I
u = 0.731364 + 0.804742I
1.86476 + 2.42134I 7.78972 4.58127I
u = 0.731364 0.804742I
1.86476 2.42134I 7.78972 + 4.58127I
u = 0.797362 + 0.743175I
9.36019 1.41507I 15.5003 + 0.7140I
u = 0.797362 0.743175I
9.36019 + 1.41507I 15.5003 0.7140I
u = 0.542555 + 0.954190I
4.16270 1.90381I 1.38256 + 2.60810I
u = 0.542555 0.954190I
4.16270 + 1.90381I 1.38256 2.60810I
u = 0.772975 + 0.816132I
6.58267 5.63550I 13.2814 + 5.3850I
u = 0.772975 0.816132I
6.58267 + 5.63550I 13.2814 5.3850I
u = 0.573285 + 0.968251I
0.49912 + 5.98276I 5.45137 6.27101I
u = 0.573285 0.968251I
0.49912 5.98276I 5.45137 + 6.27101I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.697455 + 0.924225I
1.49374 + 3.03580I 6.84419 + 0.I
u = 0.697455 0.924225I
1.49374 3.03580I 6.84419 + 0.I
u = 0.741062 + 0.918318I
6.26590 0.08152I 12.71506 + 0.I
u = 0.741062 0.918318I
6.26590 + 0.08152I 12.71506 + 0.I
u = 0.704555 + 0.970451I
2.57341 6.12702I 9.43955 + 7.72623I
u = 0.704555 0.970451I
2.57341 + 6.12702I 9.43955 7.72623I
u = 0.733151 + 0.979368I
8.63821 + 7.17962I 13.94643 + 0.I
u = 0.733151 0.979368I
8.63821 7.17962I 13.94643 + 0.I
u = 0.699306 + 1.006300I
1.57520 5.69142I 0
u = 0.699306 1.006300I
1.57520 + 5.69142I 0
u = 0.711550 + 1.013250I
1.39365 + 9.84829I 0
u = 0.711550 1.013250I
1.39365 9.84829I 0
u = 0.719515 + 1.016110I
3.2680 13.9792I 0
u = 0.719515 1.016110I
3.2680 + 13.9792I 0
u = 0.548113 + 0.343853I
0.91864 1.70258I 9.13001 + 0.33121I
u = 0.548113 0.343853I
0.91864 + 1.70258I 9.13001 0.33121I
u = 0.612012 + 0.204828I
1.88978 + 5.96132I 11.11302 5.64995I
u = 0.612012 0.204828I
1.88978 5.96132I 11.11302 + 5.64995I
u = 0.575732 + 0.249215I
2.51014 2.07572I 5.84325 + 3.66425I
u = 0.575732 0.249215I
2.51014 + 2.07572I 5.84325 3.66425I
u = 0.564176
5.97021 16.1930
u = 0.362065
0.641117 15.5690
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
52
+ u
51
+ ··· + 2u 1
c
2
, c
7
u
52
+ 17u
51
+ ··· 6u + 1
c
3
, c
5
u
52
+ 3u
51
+ ··· + 37u + 16
c
4
, c
9
, c
10
u
52
u
51
+ ··· + 3u
2
1
c
8
u
52
+ u
51
+ ··· 28u 40
c
11
u
52
5u
51
+ ··· + 96u 16
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
52
+ 17y
51
+ ··· 6y + 1
c
2
, c
7
y
52
+ 37y
51
+ ··· 54y + 1
c
3
, c
5
y
52
+ 33y
51
+ ··· 2425y + 256
c
4
, c
9
, c
10
y
52
43y
51
+ ··· 6y + 1
c
8
y
52
7y
51
+ ··· 38704y + 1600
c
11
y
52
+ 5y
51
+ ··· + 5856y + 256
8