11a
212
(K11a
212
)
A knot diagram
1
Linearized knot diagam
6 1 8 7 10 2 11 3 5 9 4
Solving Sequence
3,8
4
9,11
1 2 7 5 6 10
c
3
c
8
c
11
c
2
c
7
c
4
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−10169u
18
100279u
17
+ ··· + 16444b + 115784,
15886u
18
173333u
17
+ ··· + 147996a 951450, u
19
+ 11u
18
+ ··· 408u 72i
I
u
2
= h−75u
35
+ 383u
34
+ ··· + 8b + 212, 636u
35
a + 43u
35
+ ··· + 1470a 238, u
36
5u
35
+ ··· 16u + 3i
I
u
3
= h−2u
7
+ 5u
6
11u
5
+ 12u
4
11u
3
+ 6u
2
+ b 5u + 1, 2u
7
+ 3u
6
7u
5
+ 3u
4
3u
3
u
2
+ a 2u 2,
u
8
2u
7
+ 5u
6
5u
5
+ 6u
4
4u
3
+ 4u
2
u + 1i
I
u
4
= hu
2
a u
3
+ au u
2
+ b u + 1, u
3
a 2u
2
a + 2u
3
+ a
2
3au + 2u
2
a + 3u 1, u
4
+ u
3
+ 2u
2
+ 1i
I
v
1
= ha, b 1, v 1i
* 5 irreducible components of dim
C
= 0, with total 108 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−1.02×10
4
u
18
1.00×10
5
u
17
+· · ·+1.64×10
4
b+1.16×10
5
, 1.59×10
4
u
18
1.73 × 10
5
u
17
+ · · · + 1.48 × 10
5
a 9.51 × 10
5
, u
19
+ 11u
18
+ · · · 408u 72i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
a
11
=
0.107341u
18
+ 1.17120u
17
+ ··· + 18.8285u + 6.42889
0.618402u
18
+ 6.09821u
17
+ ··· 54.0570u 7.04111
a
1
=
0.0977932u
18
+ 0.457323u
17
+ ··· + 69.0524u + 14.1574
0.694661u
18
7.34791u
17
+ ··· + 195.043u + 36.7964
a
2
=
0.222793u
18
2.08232u
17
+ ··· + 5.44757u 0.157423
0.0553393u
18
0.402092u
17
+ ··· + 28.9571u + 8.20360
a
7
=
0.324472u
18
2.74858u
17
+ ··· 8.23791u 2.15037
0.157869u
18
+ 2.29762u
17
+ ··· 175.909u 35.7215
a
5
=
0.480381u
18
5.30821u
17
+ ··· + 103.723u + 14.5621
0.150389u
18
1.42623u
17
+ ··· 84.6227u 22.7665
a
6
=
0.901210u
18
9.04017u
17
+ ··· + 115.314u + 16.7261
0.348699u
18
2.61384u
17
+ ··· 168.918u 39.7808
a
10
=
0.400700u
18
+ 4.88295u
17
+ ··· 227.797u 43.5867
0.911761u
18
+ 9.80996u
17
+ ··· 300.682u 57.0567
a
10
=
0.400700u
18
+ 4.88295u
17
+ ··· 227.797u 43.5867
0.911761u
18
+ 9.80996u
17
+ ··· 300.682u 57.0567
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4653
4111
u
18
45527
4111
u
17
+ ··· +
398988
4111
u +
53874
4111
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
9
u
19
+ u
18
+ ··· + 2u + 1
c
2
, c
10
u
19
+ 9u
18
+ ··· 2u + 1
c
3
, c
8
u
19
11u
18
+ ··· 408u + 72
c
4
u
19
17u
18
+ ··· 1920u + 256
c
7
, c
11
u
19
2u
18
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
y
19
9y
18
+ ··· 2y 1
c
2
, c
10
y
19
+ 7y
18
+ ··· + 26y 1
c
3
, c
8
y
19
+ 11y
18
+ ··· + 2016y 5184
c
4
y
19
y
18
+ ··· + 245760y 65536
c
7
, c
11
y
19
6y
18
+ ··· + 27y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.358353 + 0.924986I
a = 0.311412 + 0.717346I
b = 0.150073 + 0.860307I
0.58834 1.54269I 4.69839 + 4.51597I
u = 0.358353 0.924986I
a = 0.311412 0.717346I
b = 0.150073 0.860307I
0.58834 + 1.54269I 4.69839 4.51597I
u = 0.966676 + 0.332222I
a = 0.818238 + 0.627994I
b = 0.311396 0.164177I
4.64927 + 0.26455I 1.71990 + 1.02803I
u = 0.966676 0.332222I
a = 0.818238 0.627994I
b = 0.311396 + 0.164177I
4.64927 0.26455I 1.71990 1.02803I
u = 0.161360 + 1.222540I
a = 0.464053 1.047230I
b = 0.11073 2.09115I
8.96802 0.88990I 16.2208 + 0.4171I
u = 0.161360 1.222540I
a = 0.464053 + 1.047230I
b = 0.11073 + 2.09115I
8.96802 + 0.88990I 16.2208 0.4171I
u = 1.289970 + 0.199680I
a = 0.686320 0.541724I
b = 0.058453 + 0.397559I
1.64114 + 11.01570I 7.29016 9.56628I
u = 1.289970 0.199680I
a = 0.686320 + 0.541724I
b = 0.058453 0.397559I
1.64114 11.01570I 7.29016 + 9.56628I
u = 0.957767 + 0.906773I
a = 0.311369 + 0.803824I
b = 0.398706 + 0.951941I
2.39512 + 0.38448I 10.41076 2.93354I
u = 0.957767 0.906773I
a = 0.311369 0.803824I
b = 0.398706 0.951941I
2.39512 0.38448I 10.41076 + 2.93354I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.580441 + 1.193400I
a = 0.361294 + 1.095690I
b = 0.81291 + 1.75794I
1.92326 5.83662I 4.80851 + 2.86417I
u = 0.580441 1.193400I
a = 0.361294 1.095690I
b = 0.81291 1.75794I
1.92326 + 5.83662I 4.80851 2.86417I
u = 0.601065
a = 0.393184
b = 0.378379
1.08922 8.82220
u = 0.65100 + 1.34345I
a = 0.271854 1.066410I
b = 0.98510 2.05670I
2.0202 17.7092I 9.44410 + 10.28902I
u = 0.65100 1.34345I
a = 0.271854 + 1.066410I
b = 0.98510 + 2.05670I
2.0202 + 17.7092I 9.44410 10.28902I
u = 0.88646 + 1.29579I
a = 0.280005 0.575557I
b = 0.078111 1.304770I
3.47013 7.94178I 12.2006 + 9.0681I
u = 0.88646 1.29579I
a = 0.280005 + 0.575557I
b = 0.078111 + 1.304770I
3.47013 + 7.94178I 12.2006 9.0681I
u = 0.05150 + 1.63379I
a = 0.067278 0.325219I
b = 0.410127 0.971726I
5.85414 + 4.86122I 16.7957 3.2884I
u = 0.05150 1.63379I
a = 0.067278 + 0.325219I
b = 0.410127 + 0.971726I
5.85414 4.86122I 16.7957 + 3.2884I
6
II. I
u
2
= h−75u
35
+ 383u
34
+ · · · + 8b + 212, 636u
35
a + 43u
35
+ · · · + 1470a
238, u
36
5u
35
+ · · · 16u + 3i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
a
11
=
a
9.37500u
35
47.8750u
34
+ ··· + 161.750u 26.5000
a
1
=
75
8
u
35
+
383
8
u
34
+ ··· + a +
53
2
9
4
u
35
125
8
u
34
+ ··· +
941
8
u
47
2
a
2
=
3.37500au
35
+ 1.54167u
35
+ ··· + 21.3750a 3.66667
0.250000au
35
4.75000u
35
+ ··· + 16.5000a + 13.5000
a
7
=
9.37500au
35
3.66667u
35
+ ··· + 26.5000a + 1.79167
57
8
u
35
a
47
8
u
35
+ ··· + 3a
7
4
a
5
=
4.87500au
35
+ 12.2917u
35
+ ··· + 26.7500a 25.7917
7.37500au
35
+ 13.5000u
35
+ ··· + 17.6250a 23.3750
a
6
=
5.87500au
35
+ 13.7083u
35
+ ··· + 2.75000a 6.33333
1.62500au
35
+ 4.87500u
35
+ ··· + 12.7500a 26.7500
a
10
=
57
8
u
35
+
129
4
u
34
+ ··· + a + 3
9
4
u
35
125
8
u
34
+ ··· +
941
8
u
47
2
a
10
=
57
8
u
35
+
129
4
u
34
+ ··· + a + 3
9
4
u
35
125
8
u
34
+ ··· +
941
8
u
47
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
47
2
u
35
211
2
u
34
+ ··· + 73u +
3
2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
9
u
72
u
71
+ ··· 26u + 43
c
2
, c
10
u
72
+ 29u
71
+ ··· + 25272u + 1849
c
3
, c
8
(u
36
+ 5u
35
+ ··· + 16u + 3)
2
c
4
(u
36
+ 7u
35
+ ··· + 10u + 1)
2
c
7
, c
11
u
72
2u
71
+ ··· 22u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
y
72
29y
71
+ ··· 25272y + 1849
c
2
, c
10
y
72
+ 31y
71
+ ··· 7699036y + 3418801
c
3
, c
8
(y
36
+ 23y
35
+ ··· + 140y + 9)
2
c
4
(y
36
+ 7y
35
+ ··· 4y + 1)
2
c
7
, c
11
y
72
4y
71
+ ··· 18y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.323607 + 0.937654I
a = 0.175351 0.450939I
b = 1.42855 2.11019I
0.65303 + 8.38929I 8.7813 13.2523I
u = 0.323607 + 0.937654I
a = 2.11473 0.35700I
b = 1.05507 1.24949I
0.65303 + 8.38929I 8.7813 13.2523I
u = 0.323607 0.937654I
a = 0.175351 + 0.450939I
b = 1.42855 + 2.11019I
0.65303 8.38929I 8.7813 + 13.2523I
u = 0.323607 0.937654I
a = 2.11473 + 0.35700I
b = 1.05507 + 1.24949I
0.65303 8.38929I 8.7813 + 13.2523I
u = 0.407223 + 0.893066I
a = 0.791967 + 0.557123I
b = 0.506201 + 0.724691I
1.70318 0.95050I 2.58255 + 0.79026I
u = 0.407223 + 0.893066I
a = 0.28278 + 1.70972I
b = 1.24717 + 1.80857I
1.70318 0.95050I 2.58255 + 0.79026I
u = 0.407223 0.893066I
a = 0.791967 0.557123I
b = 0.506201 0.724691I
1.70318 + 0.95050I 2.58255 0.79026I
u = 0.407223 0.893066I
a = 0.28278 1.70972I
b = 1.24717 1.80857I
1.70318 + 0.95050I 2.58255 0.79026I
u = 0.285005 + 0.986264I
a = 0.906188 + 0.471916I
b = 0.680137 + 0.614572I
1.39070 + 5.45819I 4.75268 7.85090I
u = 0.285005 + 0.986264I
a = 0.18402 1.83089I
b = 0.98618 2.55701I
1.39070 + 5.45819I 4.75268 7.85090I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.285005 0.986264I
a = 0.906188 0.471916I
b = 0.680137 0.614572I
1.39070 5.45819I 4.75268 + 7.85090I
u = 0.285005 0.986264I
a = 0.18402 + 1.83089I
b = 0.98618 + 2.55701I
1.39070 5.45819I 4.75268 + 7.85090I
u = 0.204395 + 0.939901I
a = 0.159162 0.415191I
b = 1.60287 1.64255I
0.14515 3.09361I 8.82386 + 5.93072I
u = 0.204395 + 0.939901I
a = 1.66507 + 1.03102I
b = 0.64754 + 1.27304I
0.14515 3.09361I 8.82386 + 5.93072I
u = 0.204395 0.939901I
a = 0.159162 + 0.415191I
b = 1.60287 + 1.64255I
0.14515 + 3.09361I 8.82386 5.93072I
u = 0.204395 0.939901I
a = 1.66507 1.03102I
b = 0.64754 1.27304I
0.14515 + 3.09361I 8.82386 5.93072I
u = 0.988537 + 0.351198I
a = 0.225935 + 0.946460I
b = 0.0017989 0.1085760I
1.77149 4.10144I 9.97996 + 6.24934I
u = 0.988537 + 0.351198I
a = 0.588772 + 0.758163I
b = 0.473418 + 0.617705I
1.77149 4.10144I 9.97996 + 6.24934I
u = 0.988537 0.351198I
a = 0.225935 0.946460I
b = 0.0017989 + 0.1085760I
1.77149 + 4.10144I 9.97996 6.24934I
u = 0.988537 0.351198I
a = 0.588772 0.758163I
b = 0.473418 0.617705I
1.77149 + 4.10144I 9.97996 6.24934I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.080650 + 0.243992I
a = 0.856190 0.655908I
b = 0.047350 + 0.413085I
3.39022 5.68113I 3.92911 + 4.67272I
u = 1.080650 + 0.243992I
a = 0.724773 + 0.544582I
b = 0.249139 0.068035I
3.39022 5.68113I 3.92911 + 4.67272I
u = 1.080650 0.243992I
a = 0.856190 + 0.655908I
b = 0.047350 0.413085I
3.39022 + 5.68113I 3.92911 4.67272I
u = 1.080650 0.243992I
a = 0.724773 0.544582I
b = 0.249139 + 0.068035I
3.39022 + 5.68113I 3.92911 4.67272I
u = 0.118764 + 0.883260I
a = 1.240850 + 0.207363I
b = 0.794679 + 0.293981I
0.57130 + 1.50593I 8.88680 + 0.90138I
u = 0.118764 + 0.883260I
a = 0.11523 1.91114I
b = 0.64321 2.55956I
0.57130 + 1.50593I 8.88680 + 0.90138I
u = 0.118764 0.883260I
a = 1.240850 0.207363I
b = 0.794679 0.293981I
0.57130 1.50593I 8.88680 0.90138I
u = 0.118764 0.883260I
a = 0.11523 + 1.91114I
b = 0.64321 + 2.55956I
0.57130 1.50593I 8.88680 0.90138I
u = 0.375701 + 1.185220I
a = 0.185369 0.878085I
b = 0.06699 1.99722I
4.64275 + 3.93521I 11.18615 4.33934I
u = 0.375701 + 1.185220I
a = 0.543890 + 1.086350I
b = 0.68365 + 1.43792I
4.64275 + 3.93521I 11.18615 4.33934I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.375701 1.185220I
a = 0.185369 + 0.878085I
b = 0.06699 + 1.99722I
4.64275 3.93521I 11.18615 + 4.33934I
u = 0.375701 1.185220I
a = 0.543890 1.086350I
b = 0.68365 1.43792I
4.64275 3.93521I 11.18615 + 4.33934I
u = 0.366522 + 0.661253I
a = 1.43742 0.22873I
b = 0.789147 + 0.111369I
0.15412 5.32337I 7.89175 + 4.81078I
u = 0.366522 + 0.661253I
a = 0.25927 + 1.87585I
b = 1.20633 + 1.72823I
0.15412 5.32337I 7.89175 + 4.81078I
u = 0.366522 0.661253I
a = 1.43742 + 0.22873I
b = 0.789147 0.111369I
0.15412 + 5.32337I 7.89175 4.81078I
u = 0.366522 0.661253I
a = 0.25927 1.87585I
b = 1.20633 1.72823I
0.15412 + 5.32337I 7.89175 4.81078I
u = 0.733621 + 0.056495I
a = 0.712576 + 0.589887I
b = 0.390901 + 0.249697I
1.027180 + 0.066620I 7.89585 0.16999I
u = 0.733621 + 0.056495I
a = 0.000334 0.690063I
b = 0.498708 0.023336I
1.027180 + 0.066620I 7.89585 0.16999I
u = 0.733621 0.056495I
a = 0.712576 0.589887I
b = 0.390901 0.249697I
1.027180 0.066620I 7.89585 + 0.16999I
u = 0.733621 0.056495I
a = 0.000334 + 0.690063I
b = 0.498708 + 0.023336I
1.027180 0.066620I 7.89585 + 0.16999I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.461229 + 1.192960I
a = 0.735450 + 0.704350I
b = 0.941882 + 0.432336I
4.33727 + 4.33344I 0. 7.98095I
u = 0.461229 + 1.192960I
a = 0.079786 0.637262I
b = 0.29680 1.88578I
4.33727 + 4.33344I 0. 7.98095I
u = 0.461229 1.192960I
a = 0.735450 0.704350I
b = 0.941882 0.432336I
4.33727 4.33344I 0. + 7.98095I
u = 0.461229 1.192960I
a = 0.079786 + 0.637262I
b = 0.29680 + 1.88578I
4.33727 4.33344I 0. + 7.98095I
u = 0.261513 + 1.263160I
a = 0.008648 + 0.711153I
b = 0.111760 + 1.082130I
2.36014 1.61358I 0
u = 0.261513 + 1.263160I
a = 0.056995 0.282130I
b = 0.796685 0.665417I
2.36014 1.61358I 0
u = 0.261513 1.263160I
a = 0.008648 0.711153I
b = 0.111760 1.082130I
2.36014 + 1.61358I 0
u = 0.261513 1.263160I
a = 0.056995 + 0.282130I
b = 0.796685 + 0.665417I
2.36014 + 1.61358I 0
u = 0.386093 + 1.315540I
a = 0.321924 0.776161I
b = 0.07289 2.11359I
6.83745 8.51873I 0
u = 0.386093 + 1.315540I
a = 0.567468 1.208310I
b = 1.22818 2.05777I
6.83745 8.51873I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.386093 1.315540I
a = 0.321924 + 0.776161I
b = 0.07289 + 2.11359I
6.83745 + 8.51873I 0
u = 0.386093 1.315540I
a = 0.567468 + 1.208310I
b = 1.22818 + 2.05777I
6.83745 + 8.51873I 0
u = 0.790023 + 1.128140I
a = 0.183542 + 0.797397I
b = 0.321793 + 1.049820I
2.51334 + 3.34840I 0
u = 0.790023 + 1.128140I
a = 0.286168 0.668765I
b = 0.038092 1.366730I
2.51334 + 3.34840I 0
u = 0.790023 1.128140I
a = 0.183542 0.797397I
b = 0.321793 1.049820I
2.51334 3.34840I 0
u = 0.790023 1.128140I
a = 0.286168 + 0.668765I
b = 0.038092 + 1.366730I
2.51334 3.34840I 0
u = 0.341744 + 0.520197I
a = 0.607007 + 0.115057I
b = 0.304801 + 1.331690I
2.67726 2.50734I 0.46124 + 4.14494I
u = 0.341744 + 0.520197I
a = 2.20469 + 1.12056I
b = 0.885119 0.256430I
2.67726 2.50734I 0.46124 + 4.14494I
u = 0.341744 0.520197I
a = 0.607007 0.115057I
b = 0.304801 1.331690I
2.67726 + 2.50734I 0.46124 4.14494I
u = 0.341744 0.520197I
a = 2.20469 1.12056I
b = 0.885119 + 0.256430I
2.67726 + 2.50734I 0.46124 4.14494I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.598145 + 1.270670I
a = 0.364362 + 1.030040I
b = 0.72567 + 1.78948I
0.12476 + 11.63330I 0
u = 0.598145 + 1.270670I
a = 0.282009 1.154280I
b = 1.01814 2.10114I
0.12476 + 11.63330I 0
u = 0.598145 1.270670I
a = 0.364362 1.030040I
b = 0.72567 1.78948I
0.12476 11.63330I 0
u = 0.598145 1.270670I
a = 0.282009 + 1.154280I
b = 1.01814 + 2.10114I
0.12476 11.63330I 0
u = 0.255236 + 0.508176I
a = 0.494661 0.107326I
b = 0.75887 + 1.28212I
2.67098 2.77341I 0.394325 + 0.708366I
u = 0.255236 + 0.508176I
a = 2.79447 0.04340I
b = 0.731661 + 0.492551I
2.67098 2.77341I 0.394325 + 0.708366I
u = 0.255236 0.508176I
a = 0.494661 + 0.107326I
b = 0.75887 1.28212I
2.67098 + 2.77341I 0.394325 0.708366I
u = 0.255236 0.508176I
a = 2.79447 + 0.04340I
b = 0.731661 0.492551I
2.67098 + 2.77341I 0.394325 0.708366I
u = 0.58449 + 1.51506I
a = 0.162437 0.495879I
b = 0.227921 1.342130I
5.13435 2.75063I 0
u = 0.58449 + 1.51506I
a = 0.024617 0.210269I
b = 0.521920 0.498154I
5.13435 2.75063I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.58449 1.51506I
a = 0.162437 + 0.495879I
b = 0.227921 + 1.342130I
5.13435 + 2.75063I 0
u = 0.58449 1.51506I
a = 0.024617 + 0.210269I
b = 0.521920 + 0.498154I
5.13435 + 2.75063I 0
17
III.
I
u
3
= h−2u
7
+ 5u
6
+ · · · +b + 1, 2u
7
+ 3u
6
+ · · · +a 2, u
8
2u
7
+ · · · u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
a
11
=
2u
7
3u
6
+ 7u
5
3u
4
+ 3u
3
+ u
2
+ 2u + 2
2u
7
5u
6
+ 11u
5
12u
4
+ 11u
3
6u
2
+ 5u 1
a
1
=
u
7
+ 6u
4
6u
3
+ 7u
2
2u + 4
2u
7
4u
6
+ 9u
5
8u
4
+ 7u
3
3u
2
+ 3u
a
2
=
u
7
+ 3u
6
7u
5
+ 10u
4
11u
3
+ 10u
2
7u + 4
u
7
2u
6
+ 5u
5
5u
4
+ 5u
3
2u
2
+ u + 1
a
7
=
u
7
+ u
6
3u
5
u
3
2u
2
3
u
7
+ 2u
6
5u
5
+ 5u
4
6u
3
+ 4u
2
3u
a
5
=
2u
7
5u
6
+ 11u
5
13u
4
+ 12u
3
9u
2
+ 6u 1
u
6
+ 2u
5
5u
4
+ 5u
3
6u
2
+ 3u 2
a
6
=
3u
7
8u
6
+ 17u
5
20u
4
+ 17u
3
11u
2
+ 8u 3
2u
6
+ 4u
5
9u
4
+ 8u
3
7u
2
+ 3u 3
a
10
=
2u
7
2u
6
+ 5u
5
+ 2u
4
2u
3
+ 6u
2
+ 4
2u
7
4u
6
+ 9u
5
7u
4
+ 6u
3
u
2
+ 3u + 1
a
10
=
2u
7
2u
6
+ 5u
5
+ 2u
4
2u
3
+ 6u
2
+ 4
2u
7
4u
6
+ 9u
5
7u
4
+ 6u
3
u
2
+ 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
7
+ 15u
6
33u
5
+ 42u
4
36u
3
+ 22u
2
18u 3
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
8
2u
6
+ 3u
4
+ u
3
2u
2
u + 1
c
2
, c
10
u
8
+ 4u
7
+ 10u
6
+ 16u
5
+ 19u
4
+ 17u
3
+ 12u
2
+ 5u + 1
c
3
u
8
2u
7
+ 5u
6
5u
5
+ 6u
4
4u
3
+ 4u
2
u + 1
c
4
u
8
3u
7
+ 3u
6
u
5
u
4
+ u
3
+ 1
c
6
, c
9
u
8
2u
6
+ 3u
4
u
3
2u
2
+ u + 1
c
7
, c
11
u
8
u
7
+ 2u
4
u
3
u
2
+ 1
c
8
u
8
+ 2u
7
+ 5u
6
+ 5u
5
+ 6u
4
+ 4u
3
+ 4u
2
+ u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
y
8
4y
7
+ 10y
6
16y
5
+ 19y
4
17y
3
+ 12y
2
5y + 1
c
2
, c
10
y
8
+ 4y
7
+ 10y
6
+ 12y
5
+ 19y
4
+ 27y
3
+ 12y
2
y + 1
c
3
, c
8
y
8
+ 6y
7
+ 17y
6
+ 27y
5
+ 34y
4
+ 32y
3
+ 20y
2
+ 7y + 1
c
4
y
8
3y
7
+ y
6
y
5
+ 5y
4
+ 5y
3
2y
2
+ 1
c
7
, c
11
y
8
y
7
+ 4y
6
4y
5
+ 6y
4
5y
3
+ 5y
2
2y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.792109 + 0.738037I
a = 0.382665 + 0.800987I
b = 0.073913 + 0.733193I
2.49555 + 0.86293I 13.14261 3.03469I
u = 0.792109 0.738037I
a = 0.382665 0.800987I
b = 0.073913 0.733193I
2.49555 0.86293I 13.14261 + 3.03469I
u = 0.289722 + 0.810357I
a = 1.207080 0.334530I
b = 0.08655 1.63964I
0.50761 7.31144I 8.44025 + 5.07969I
u = 0.289722 0.810357I
a = 1.207080 + 0.334530I
b = 0.08655 + 1.63964I
0.50761 + 7.31144I 8.44025 5.07969I
u = 0.010381 + 0.674737I
a = 1.24580 + 1.30467I
b = 0.28206 + 1.43052I
1.91736 + 3.67399I 5.72808 5.47869I
u = 0.010381 0.674737I
a = 1.24580 1.30467I
b = 0.28206 1.43052I
1.91736 3.67399I 5.72808 + 5.47869I
u = 0.48723 + 1.51401I
a = 0.156057 0.473494I
b = 0.378403 1.209690I
5.49394 + 5.83988I 13.6891 9.4941I
u = 0.48723 1.51401I
a = 0.156057 + 0.473494I
b = 0.378403 + 1.209690I
5.49394 5.83988I 13.6891 + 9.4941I
21
IV.
I
u
4
= hu
2
au
3
+auu
2
+bu+1, u
3
a+2u
3
+· · ·a1, u
4
+u
3
+2u
2
+1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
a
11
=
a
u
2
a + u
3
au + u
2
+ u 1
a
1
=
u
3
+ au u
2
+ a u + 1
u
3
a u
2
a au 1
a
2
=
u
2
a + u
3
+ 2u
2
a + 3u + 2
u
3
a u
2
a au + u
2
a + u + 1
a
7
=
u
3
a + u
2
a + au + u
2
a + u + 2
u
3
a + u
2
a u
3
+ au u
2
u + 1
a
5
=
u
3
a + u
2
a u
3
+ 2au u
2
u + 2
u
3
+ au 2u
2
2u
a
6
=
u
3
a + 2u
2
a + 2au + u
2
+ u + 1
u
2
a u
3
+ au u
2
+ a 2u
a
10
=
u
2
a u
3
u
2
+ 2a u
au + a 1
a
10
=
u
2
a u
3
u
2
+ 2a u
au + a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
3
6u
2
7u 7
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
8
2u
6
u
5
+ 3u
4
+ u
3
2u
2
+ 1
c
2
, c
10
u
8
+ 4u
7
+ 10u
6
+ 17u
5
+ 21u
4
+ 17u
3
+ 10u
2
+ 4u + 1
c
3
(u
4
+ u
3
+ 2u
2
+ 1)
2
c
4
(u
4
+ u
3
+ 1)
2
c
6
, c
9
u
8
2u
6
+ u
5
+ 3u
4
u
3
2u
2
+ 1
c
7
, c
11
u
8
3u
7
+ 3u
6
u
5
u
4
+ 2u
3
u
2
+ 1
c
8
(u
4
u
3
+ 2u
2
+ 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
y
8
4y
7
+ 10y
6
17y
5
+ 21y
4
17y
3
+ 10y
2
4y + 1
c
2
, c
10
y
8
+ 4y
7
+ 6y
6
+ 15y
5
+ 33y
4
+ 15y
3
+ 6y
2
+ 4y + 1
c
3
, c
8
(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
2
c
4
(y
4
y
3
+ 2y
2
+ 1)
2
c
7
, c
11
y
8
3y
7
+ y
6
+ 3y
5
+ y
4
+ 4y
3
y
2
2y + 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.175098 + 0.691825I
a = 1.258400 + 0.403038I
b = 0.799065 0.398882I
1.13814 + 2.37936I 4.06162 4.69148I
u = 0.175098 + 0.691825I
a = 0.87507 + 1.88950I
b = 0.00729 + 1.99959I
1.13814 + 2.37936I 4.06162 4.69148I
u = 0.175098 0.691825I
a = 1.258400 0.403038I
b = 0.799065 + 0.398882I
1.13814 2.37936I 4.06162 + 4.69148I
u = 0.175098 0.691825I
a = 0.87507 1.88950I
b = 0.00729 1.99959I
1.13814 2.37936I 4.06162 + 4.69148I
u = 0.675098 + 1.227920I
a = 0.243445 + 0.679234I
b = 0.693631 + 0.465880I
4.42801 3.38562I 12.43838 + 2.38747I
u = 0.675098 + 1.227920I
a = 0.139876 0.483891I
b = 0.01459 1.49846I
4.42801 3.38562I 12.43838 + 2.38747I
u = 0.675098 1.227920I
a = 0.243445 0.679234I
b = 0.693631 0.465880I
4.42801 + 3.38562I 12.43838 2.38747I
u = 0.675098 1.227920I
a = 0.139876 + 0.483891I
b = 0.01459 + 1.49846I
4.42801 + 3.38562I 12.43838 2.38747I
25
V. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
1
0
a
4
=
1
0
a
9
=
1
0
a
11
=
0
1
a
1
=
1
1
a
2
=
2
1
a
7
=
1
1
a
5
=
0
1
a
6
=
1
0
a
10
=
1
1
a
10
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
9
u 1
c
2
, c
7
, c
10
c
11
u + 1
c
3
, c
8
u
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y 1
c
3
, c
8
y
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
4.93480 18.0000
29
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)(u
8
2u
6
+ 3u
4
+ u
3
2u
2
u + 1)
· (u
8
2u
6
u
5
+ 3u
4
+ u
3
2u
2
+ 1)(u
19
+ u
18
+ ··· + 2u + 1)
· (u
72
u
71
+ ··· 26u + 43)
c
2
, c
10
(u + 1)(u
8
+ 4u
7
+ 10u
6
+ 16u
5
+ 19u
4
+ 17u
3
+ 12u
2
+ 5u + 1)
· (u
8
+ 4u
7
+ 10u
6
+ 17u
5
+ 21u
4
+ 17u
3
+ 10u
2
+ 4u + 1)
· (u
19
+ 9u
18
+ ··· 2u + 1)(u
72
+ 29u
71
+ ··· + 25272u + 1849)
c
3
u(u
4
+ u
3
+ 2u
2
+ 1)
2
(u
8
2u
7
+ ··· u + 1)
· (u
19
11u
18
+ ··· 408u + 72)(u
36
+ 5u
35
+ ··· + 16u + 3)
2
c
4
(u 1)(u
4
+ u
3
+ 1)
2
(u
8
3u
7
+ 3u
6
u
5
u
4
+ u
3
+ 1)
· (u
19
17u
18
+ ··· 1920u + 256)(u
36
+ 7u
35
+ ··· + 10u + 1)
2
c
6
, c
9
(u 1)(u
8
2u
6
+ 3u
4
u
3
2u
2
+ u + 1)
· (u
8
2u
6
+ u
5
+ 3u
4
u
3
2u
2
+ 1)(u
19
+ u
18
+ ··· + 2u + 1)
· (u
72
u
71
+ ··· 26u + 43)
c
7
, c
11
(u + 1)(u
8
3u
7
+ ··· u
2
+ 1)(u
8
u
7
+ ··· u
2
+ 1)
· (u
19
2u
18
+ ··· + u + 1)(u
72
2u
71
+ ··· 22u + 1)
c
8
u(u
4
u
3
+ 2u
2
+ 1)
2
(u
8
+ 2u
7
+ ··· + u + 1)
· (u
19
11u
18
+ ··· 408u + 72)(u
36
+ 5u
35
+ ··· + 16u + 3)
2
30
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
(y 1)(y
8
4y
7
+ 10y
6
17y
5
+ 21y
4
17y
3
+ 10y
2
4y + 1)
· (y
8
4y
7
+ 10y
6
16y
5
+ 19y
4
17y
3
+ 12y
2
5y + 1)
· (y
19
9y
18
+ ··· 2y 1)(y
72
29y
71
+ ··· 25272y + 1849)
c
2
, c
10
(y 1)(y
8
+ 4y
7
+ 6y
6
+ 15y
5
+ 33y
4
+ 15y
3
+ 6y
2
+ 4y + 1)
· (y
8
+ 4y
7
+ 10y
6
+ 12y
5
+ 19y
4
+ 27y
3
+ 12y
2
y + 1)
· (y
19
+ 7y
18
+ ··· + 26y 1)
· (y
72
+ 31y
71
+ ··· 7699036y + 3418801)
c
3
, c
8
y(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
2
· (y
8
+ 6y
7
+ 17y
6
+ 27y
5
+ 34y
4
+ 32y
3
+ 20y
2
+ 7y + 1)
· (y
19
+ 11y
18
+ ··· + 2016y 5184)(y
36
+ 23y
35
+ ··· + 140y + 9)
2
c
4
(y 1)(y
4
y
3
+ 2y
2
+ 1)
2
(y
8
3y
7
+ ··· 2y
2
+ 1)
· (y
19
y
18
+ ··· + 245760y 65536)(y
36
+ 7y
35
+ ··· 4y + 1)
2
c
7
, c
11
(y 1)(y
8
3y
7
+ y
6
+ 3y
5
+ y
4
+ 4y
3
y
2
2y + 1)
· (y
8
y
7
+ 4y
6
4y
5
+ 6y
4
5y
3
+ 5y
2
2y + 1)
· (y
19
6y
18
+ ··· + 27y 1)(y
72
4y
71
+ ··· 18y + 1)
31