11a
215
(K11a
215
)
A knot diagram
1
Linearized knot diagam
6 1 10 11 9 2 4 5 3 8 7
Solving Sequence
2,6
7 1
3,9
10 5 8 11 4
c
6
c
1
c
2
c
9
c
5
c
8
c
11
c
4
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−29u
26
+ 175u
25
+ ··· + 4b + 156, 41u
26
+ 209u
25
+ ··· + 8a + 92, u
27
7u
26
+ ··· 48u + 8i
I
u
2
= h−4.28042 × 10
21
a
5
u
8
+ 3.83114 × 10
22
a
4
u
8
+ ··· 6.06064 × 10
22
a + 4.42208 × 10
22
,
3u
8
a
3
+ 9u
8
a
2
+ ··· 18a 43, u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1i
I
u
3
= h−u
14
+ 3u
12
5u
10
+ 3u
8
+ u
7
u
6
2u
5
u
4
+ 2u
3
+ b u 1,
u
14
3u
13
3u
12
+ 10u
11
+ 4u
10
17u
9
u
8
+ 11u
7
+ u
6
u
5
6u
4
3u
3
+ 8u
2
+ a u 4,
u
15
4u
13
+ 8u
11
8u
9
u
8
+ 4u
7
+ 3u
6
4u
4
+ 3u
2
1i
* 3 irreducible components of dim
C
= 0, with total 96 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−29u
26
+ 175u
25
+ · · · + 4b + 156, 41u
26
+ 209u
25
+ · · · + 8a +
92, u
27
7u
26
+ · · · 48u + 8i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
9
=
5.12500u
26
26.1250u
25
+ ··· + 76.5000u 11.5000
29
4
u
26
175
4
u
25
+ ··· +
447
2
u 39
a
10
=
4.12500u
26
26.1250u
25
+ ··· + 212.500u 43.5000
3
4
u
26
+
5
4
u
25
+ ··· +
101
2
u 13
a
5
=
6u
26
67
2
u
25
+ ··· + 128u
39
2
5
2
u
26
17u
25
+ ··· +
345
2
u 36
a
8
=
19
4
u
26
53
2
u
25
+ ··· +
321
4
u 11
17
4
u
26
101
4
u
25
+ ··· + 106u 16
a
11
=
u
3
u
5
u
3
+ u
a
4
=
4u
26
+
45
2
u
25
+ ··· 76u +
25
2
3
2
u
25
13
2
u
24
+ ···
71
2
u + 8
a
4
=
4u
26
+
45
2
u
25
+ ··· 76u +
25
2
3
2
u
25
13
2
u
24
+ ···
71
2
u + 8
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
26
42u
25
+ 85u
24
+ 32u
23
464u
22
+ 782u
21
+ 58u
20
2162u
19
+ 3200u
18
304u
17
5341u
16
+ 7635u
15
2013u
14
7580u
13
+ 11422u
12
4923u
11
5645u
10
+
10277u
9
6041u
8
1288u
7
+ 4988u
6
3826u
5
+ 1037u
4
+ 557u
3
655u
2
+ 276u 46
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
27
7u
26
+ ··· 48u + 8
c
2
u
27
+ 13u
26
+ ··· + 224u + 64
c
3
, c
5
, c
8
c
9
u
27
+ u
26
+ ··· + 2u + 1
c
4
, c
7
u
27
+ 3u
25
+ ··· + 3u + 1
c
10
u
27
27u
26
+ ··· 7424u + 512
c
11
u
27
21u
26
+ ··· 19888u + 2664
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
27
13y
26
+ ··· + 224y 64
c
2
y
27
y
26
+ ··· + 2560y 4096
c
3
, c
5
, c
8
c
9
y
27
25y
26
+ ··· 10y 1
c
4
, c
7
y
27
+ 6y
26
+ ··· + 3y 1
c
10
y
27
5y
26
+ ··· + 2424832y 262144
c
11
y
27
+ 15y
26
+ ··· + 24224224y 7096896
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.250449 + 1.038140I
a = 0.444857 0.280509I
b = 1.222090 + 0.179844I
5.84917 + 1.93910I 18.8822 3.3310I
u = 0.250449 1.038140I
a = 0.444857 + 0.280509I
b = 1.222090 0.179844I
5.84917 1.93910I 18.8822 + 3.3310I
u = 0.942577 + 0.503851I
a = 0.932522 + 0.762632I
b = 0.482241 0.629621I
1.12638 3.49850I 2.08740 + 6.42119I
u = 0.942577 0.503851I
a = 0.932522 0.762632I
b = 0.482241 + 0.629621I
1.12638 + 3.49850I 2.08740 6.42119I
u = 0.206067 + 0.899919I
a = 0.523648 + 0.537105I
b = 1.48683 0.50104I
8.00804 + 11.41820I 8.36312 5.92536I
u = 0.206067 0.899919I
a = 0.523648 0.537105I
b = 1.48683 + 0.50104I
8.00804 11.41820I 8.36312 + 5.92536I
u = 1.061350 + 0.298652I
a = 0.099401 + 0.688573I
b = 0.008660 + 0.493664I
2.59299 + 0.52735I 7.52998 1.76243I
u = 1.061350 0.298652I
a = 0.099401 0.688573I
b = 0.008660 0.493664I
2.59299 0.52735I 7.52998 + 1.76243I
u = 0.707332 + 0.846348I
a = 0.001548 + 0.443664I
b = 1.207210 + 0.175822I
2.83672 + 3.13233I 8.60430 4.73932I
u = 0.707332 0.846348I
a = 0.001548 0.443664I
b = 1.207210 0.175822I
2.83672 3.13233I 8.60430 + 4.73932I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.921192 + 0.733170I
a = 0.488034 0.960402I
b = 1.243300 + 0.306554I
3.51361 8.92967I 8.84256 + 8.65936I
u = 0.921192 0.733170I
a = 0.488034 + 0.960402I
b = 1.243300 0.306554I
3.51361 + 8.92967I 8.84256 8.65936I
u = 0.583614 + 0.540343I
a = 0.431550 + 0.437769I
b = 0.286435 0.643143I
2.16469 0.74717I 1.19667 + 1.31837I
u = 0.583614 0.540343I
a = 0.431550 0.437769I
b = 0.286435 + 0.643143I
2.16469 + 0.74717I 1.19667 1.31837I
u = 1.095640 + 0.533268I
a = 0.918975 + 0.305045I
b = 0.038720 + 0.614836I
0.99910 6.61566I 2.67665 + 5.91111I
u = 1.095640 0.533268I
a = 0.918975 0.305045I
b = 0.038720 0.614836I
0.99910 + 6.61566I 2.67665 5.91111I
u = 0.323531 + 0.655078I
a = 0.318838 0.202977I
b = 0.049362 + 0.615471I
1.20723 + 1.99852I 0.24096 2.02450I
u = 0.323531 0.655078I
a = 0.318838 + 0.202977I
b = 0.049362 0.615471I
1.20723 1.99852I 0.24096 + 2.02450I
u = 1.280650 + 0.313658I
a = 1.96356 0.72558I
b = 1.54139 0.41238I
12.8060 7.3523I 13.07121 + 3.51912I
u = 1.280650 0.313658I
a = 1.96356 + 0.72558I
b = 1.54139 + 0.41238I
12.8060 + 7.3523I 13.07121 3.51912I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.212520 + 0.560901I
a = 2.08232 + 1.39711I
b = 1.52806 0.55410I
11.0486 16.7322I 11.0194 + 9.0355I
u = 1.212520 0.560901I
a = 2.08232 1.39711I
b = 1.52806 + 0.55410I
11.0486 + 16.7322I 11.0194 9.0355I
u = 1.346150 + 0.244793I
a = 1.76713 + 0.21440I
b = 1.366950 + 0.073827I
11.47790 + 2.36837I 17.5105 3.3278I
u = 1.346150 0.244793I
a = 1.76713 0.21440I
b = 1.366950 0.073827I
11.47790 2.36837I 17.5105 + 3.3278I
u = 0.624607
a = 0.939222
b = 0.473047
0.948941 10.2360
u = 1.257530 + 0.592160I
a = 1.54642 1.10756I
b = 1.254580 + 0.299552I
9.04410 7.78302I 15.7321 + 8.2671I
u = 1.257530 0.592160I
a = 1.54642 + 1.10756I
b = 1.254580 0.299552I
9.04410 + 7.78302I 15.7321 8.2671I
7
II. I
u
2
= h−4.28 × 10
21
a
5
u
8
+ 3.83 × 10
22
a
4
u
8
+ · · · 6.06 × 10
22
a + 4.42 ×
10
22
, 3u
8
a
3
+9u
8
a
2
+· · ·18a43, u
9
+u
8
2u
7
3u
6
+u
5
+3u
4
+2u
3
u1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
9
=
a
0.135799a
5
u
8
1.21545a
4
u
8
+ ··· + 1.92277a 1.40293
a
10
=
0.216342a
5
u
8
0.570413a
4
u
8
+ ··· + 2.96433a 0.595647
0.150805a
5
u
8
1.50492a
4
u
8
+ ··· + 3.12982a 1.29739
a
5
=
0.159195a
5
u
8
+ 0.143153a
4
u
8
+ ··· 0.569358a + 0.0173501
0.0275012a
5
u
8
1.94896a
4
u
8
+ ··· + 1.64651a 1.62293
a
8
=
0.554759a
5
u
8
0.883326a
4
u
8
+ ··· + 3.07806a + 0.120655
0.185431a
5
u
8
+ 0.876552a
4
u
8
+ ··· + 2.54167a + 0.420697
a
11
=
u
3
u
5
u
3
+ u
a
4
=
0.143558a
5
u
8
0.394845a
4
u
8
+ ··· + 0.834495a 0.484708
0.0732090a
5
u
8
1.50089a
4
u
8
+ ··· + 1.91001a 1.77924
a
4
=
0.143558a
5
u
8
0.394845a
4
u
8
+ ··· + 0.834495a 0.484708
0.0732090a
5
u
8
1.50089a
4
u
8
+ ··· + 1.91001a 1.77924
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2195399251632745551288
4502908240731220953089
u
8
a
5
1658362058057093286068
4502908240731220953089
u
8
a
4
+ ···
3414044045562139416812
4502908240731220953089
a
24919211764634738825954
4502908240731220953089
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
6
c
2
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
6
c
3
, c
5
, c
8
c
9
u
54
u
53
+ ··· 2672u 1393
c
4
, c
7
u
54
3u
53
+ ··· + 946u 229
c
10
(u
3
+ u
2
1)
18
c
11
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
6
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
6
c
2
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
6
c
3
, c
5
, c
8
c
9
y
54
45y
53
+ ··· + 8846484y + 1940449
c
4
, c
7
y
54
+ 15y
53
+ ··· + 1004868y + 52441
c
10
(y
3
y
2
+ 2y 1)
18
c
11
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
6
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.772920 + 0.510351I
a = 0.421767 0.926709I
b = 1.202420 + 0.401684I
4.26482 + 2.09337I 10.50452 4.16283I
u = 0.772920 + 0.510351I
a = 0.358651 0.337314I
b = 0.168504 + 0.856224I
0.12724 + 4.92150I 3.97525 7.14228I
u = 0.772920 + 0.510351I
a = 1.58358 0.28481I
b = 0.365320 + 0.500469I
0.127239 0.734748I 3.97525 1.18338I
u = 0.772920 + 0.510351I
a = 0.213181 0.257169I
b = 0.928682 0.475966I
0.127239 0.734748I 3.97525 1.18338I
u = 0.772920 + 0.510351I
a = 0.77730 + 1.65150I
b = 1.122440 + 0.149270I
4.26482 + 2.09337I 10.50452 4.16283I
u = 0.772920 + 0.510351I
a = 1.16973 + 1.42641I
b = 1.065130 0.464824I
0.12724 + 4.92150I 3.97525 7.14228I
u = 0.772920 0.510351I
a = 0.421767 + 0.926709I
b = 1.202420 0.401684I
4.26482 2.09337I 10.50452 + 4.16283I
u = 0.772920 0.510351I
a = 0.358651 + 0.337314I
b = 0.168504 0.856224I
0.12724 4.92150I 3.97525 + 7.14228I
u = 0.772920 0.510351I
a = 1.58358 + 0.28481I
b = 0.365320 0.500469I
0.127239 + 0.734748I 3.97525 + 1.18338I
u = 0.772920 0.510351I
a = 0.213181 + 0.257169I
b = 0.928682 + 0.475966I
0.127239 + 0.734748I 3.97525 + 1.18338I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.772920 0.510351I
a = 0.77730 1.65150I
b = 1.122440 0.149270I
4.26482 2.09337I 10.50452 + 4.16283I
u = 0.772920 0.510351I
a = 1.16973 1.42641I
b = 1.065130 + 0.464824I
0.12724 4.92150I 3.97525 + 7.14228I
u = 0.825933
a = 0.99489 + 1.36802I
b = 0.850633 0.711452I
3.10912 2.82812I 13.14259 + 2.97945I
u = 0.825933
a = 0.99489 1.36802I
b = 0.850633 + 0.711452I
3.10912 + 2.82812I 13.14259 2.97945I
u = 0.825933
a = 1.81663
b = 1.76108
7.24670 19.6720
u = 0.825933
a = 1.65119 + 2.62062I
b = 0.740435 + 0.041728I
3.10912 2.82812I 13.14259 + 2.97945I
u = 0.825933
a = 1.65119 2.62062I
b = 0.740435 0.041728I
3.10912 + 2.82812I 13.14259 2.97945I
u = 0.825933
a = 3.55546
b = 1.46912
7.24670 19.6720
u = 1.173910 + 0.391555I
a = 0.569282 1.077620I
b = 0.474901 1.323300I
6.28202 + 1.49195I 11.77434 2.27770I
u = 1.173910 + 0.391555I
a = 0.516921 0.313844I
b = 0.185503 + 0.512258I
6.28202 4.16429I 11.77434 + 3.68120I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.173910 + 0.391555I
a = 2.17850 + 0.12813I
b = 1.380310 + 0.183722I
10.41960 1.33617I 18.3036 + 0.7017I
u = 1.173910 + 0.391555I
a = 1.92979 1.47306I
b = 1.83390 0.60150I
10.41960 1.33617I 18.3036 + 0.7017I
u = 1.173910 + 0.391555I
a = 2.47431 0.76430I
b = 1.315040 + 0.370548I
6.28202 4.16429I 11.77434 + 3.68120I
u = 1.173910 + 0.391555I
a = 2.60969 + 1.14050I
b = 1.262020 + 0.125124I
6.28202 + 1.49195I 11.77434 2.27770I
u = 1.173910 0.391555I
a = 0.569282 + 1.077620I
b = 0.474901 + 1.323300I
6.28202 1.49195I 11.77434 + 2.27770I
u = 1.173910 0.391555I
a = 0.516921 + 0.313844I
b = 0.185503 0.512258I
6.28202 + 4.16429I 11.77434 3.68120I
u = 1.173910 0.391555I
a = 2.17850 0.12813I
b = 1.380310 0.183722I
10.41960 + 1.33617I 18.3036 0.7017I
u = 1.173910 0.391555I
a = 1.92979 + 1.47306I
b = 1.83390 + 0.60150I
10.41960 + 1.33617I 18.3036 0.7017I
u = 1.173910 0.391555I
a = 2.47431 + 0.76430I
b = 1.315040 0.370548I
6.28202 + 4.16429I 11.77434 3.68120I
u = 1.173910 0.391555I
a = 2.60969 1.14050I
b = 1.262020 0.125124I
6.28202 1.49195I 11.77434 + 2.27770I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.141484 + 0.739668I
a = 0.557068 0.760680I
b = 0.100409 + 0.439662I
2.52761 + 0.37370I 6.81817 0.06647I
u = 0.141484 + 0.739668I
a = 0.824663 + 0.004372I
b = 1.178650 + 0.193591I
2.52761 + 0.37370I 6.81817 0.06647I
u = 0.141484 + 0.739668I
a = 0.305670 + 0.700140I
b = 1.62567 0.66037I
6.66520 2.45442I 13.34743 + 2.91298I
u = 0.141484 + 0.739668I
a = 0.153194 + 0.618598I
b = 0.243877 1.275290I
2.52761 5.28254I 6.81817 + 5.89242I
u = 0.141484 + 0.739668I
a = 1.39802 0.34488I
b = 1.252610 + 0.265598I
2.52761 5.28254I 6.81817 + 5.89242I
u = 0.141484 + 0.739668I
a = 0.53019 1.33944I
b = 1.267560 + 0.161698I
6.66520 2.45442I 13.34743 + 2.91298I
u = 0.141484 0.739668I
a = 0.557068 + 0.760680I
b = 0.100409 0.439662I
2.52761 0.37370I 6.81817 + 0.06647I
u = 0.141484 0.739668I
a = 0.824663 0.004372I
b = 1.178650 0.193591I
2.52761 0.37370I 6.81817 + 0.06647I
u = 0.141484 0.739668I
a = 0.305670 0.700140I
b = 1.62567 + 0.66037I
6.66520 + 2.45442I 13.34743 2.91298I
u = 0.141484 0.739668I
a = 0.153194 0.618598I
b = 0.243877 + 1.275290I
2.52761 + 5.28254I 6.81817 5.89242I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.141484 0.739668I
a = 1.39802 + 0.34488I
b = 1.252610 0.265598I
2.52761 + 5.28254I 6.81817 5.89242I
u = 0.141484 0.739668I
a = 0.53019 + 1.33944I
b = 1.267560 0.161698I
6.66520 + 2.45442I 13.34743 2.91298I
u = 1.172470 + 0.500383I
a = 1.35974 0.47536I
b = 0.21600 1.43941I
5.50880 + 9.91305I 10.06705 8.89280I
u = 1.172470 + 0.500383I
a = 0.1039610 0.0108303I
b = 0.121537 + 0.653105I
5.50880 + 4.25680I 10.06705 2.93390I
u = 1.172470 + 0.500383I
a = 1.80768 + 1.26186I
b = 1.324480 + 0.087624I
5.50880 + 4.25680I 10.06705 2.93390I
u = 1.172470 + 0.500383I
a = 1.76757 1.99982I
b = 1.252120 + 0.251479I
9.64638 + 7.08493I 16.5963 5.9133I
u = 1.172470 + 0.500383I
a = 2.41757 + 1.36405I
b = 1.66751 0.81351I
9.64638 + 7.08493I 16.5963 5.9133I
u = 1.172470 + 0.500383I
a = 2.57279 1.25561I
b = 1.348440 + 0.274419I
5.50880 + 9.91305I 10.06705 8.89280I
u = 1.172470 0.500383I
a = 1.35974 + 0.47536I
b = 0.21600 + 1.43941I
5.50880 9.91305I 10.06705 + 8.89280I
u = 1.172470 0.500383I
a = 0.1039610 + 0.0108303I
b = 0.121537 0.653105I
5.50880 4.25680I 10.06705 + 2.93390I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.172470 0.500383I
a = 1.80768 1.26186I
b = 1.324480 0.087624I
5.50880 4.25680I 10.06705 + 2.93390I
u = 1.172470 0.500383I
a = 1.76757 + 1.99982I
b = 1.252120 0.251479I
9.64638 7.08493I 16.5963 + 5.9133I
u = 1.172470 0.500383I
a = 2.41757 1.36405I
b = 1.66751 + 0.81351I
9.64638 7.08493I 16.5963 + 5.9133I
u = 1.172470 0.500383I
a = 2.57279 + 1.25561I
b = 1.348440 0.274419I
5.50880 9.91305I 10.06705 + 8.89280I
16
III.
I
u
3
= h−u
14
+3u
12
+· · ·+b1, u
14
3u
13
+· · ·+a4, u
15
4u
13
+· · ·+3u
2
1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
9
=
u
14
+ 3u
13
+ ··· + u + 4
u
14
3u
12
+ 5u
10
3u
8
u
7
+ u
6
+ 2u
5
+ u
4
2u
3
+ u + 1
a
10
=
u
14
+ 2u
13
+ ··· + u + 3
u
14
3u
12
+ 5u
10
3u
8
u
7
+ u
6
+ 3u
5
+ u
4
3u
3
+ 2u + 1
a
5
=
u
14
2u
13
+ ··· 2u 4
2u
14
+ 7u
12
12u
10
+ 9u
8
+ 2u
7
2u
6
5u
5
2u
4
+ 5u
3
3u 1
a
8
=
2u
14
+ 7u
12
+ ··· 2u 1
u
14
u
13
+ ··· 3u 1
a
11
=
u
3
u
5
u
3
+ u
a
4
=
u
14
2u
13
+ ··· 2u 4
2u
14
u
13
+ ··· 3u 2
a
4
=
u
14
2u
13
+ ··· 2u 4
2u
14
u
13
+ ··· 3u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
14
5u
13
37u
12
+ 19u
11
+ 64u
10
33u
9
47u
8
+ 13u
7
+
19u
6
+ 24u
5
4u
4
32u
3
+ 17u
2
+ 13u 12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
4u
13
+ 8u
11
8u
9
+ u
8
+ 4u
7
3u
6
+ 4u
4
3u
2
+ 1
c
2
u
15
+ 8u
14
+ ··· + 6u + 1
c
3
, c
8
u
15
u
14
+ ··· u + 1
c
4
, c
7
u
15
+ 2u
13
u
12
+ 3u
11
u
10
+ 2u
9
+ u
7
+ 2u
6
3u
5
+ 4u
4
+ 1
c
5
, c
9
u
15
+ u
14
+ ··· u 1
c
6
u
15
4u
13
+ 8u
11
8u
9
u
8
+ 4u
7
+ 3u
6
4u
4
+ 3u
2
1
c
10
u
15
+ 4u
14
+ ··· + 2u
2
1
c
11
u
15
+ 4u
13
+ ··· 6u
2
+ 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
15
8y
14
+ ··· + 6y 1
c
2
y
15
+ 16y
13
+ ··· + 2y 1
c
3
, c
5
, c
8
c
9
y
15
15y
14
+ ··· + 11y 1
c
4
, c
7
y
15
+ 4y
14
+ ··· 8y
2
1
c
10
y
15
4y
14
+ ··· + 4y 1
c
11
y
15
+ 8y
14
+ ··· + 12y 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.997247 + 0.392970I
a = 0.90416 1.35022I
b = 0.590150 0.441101I
3.33424 0.63342I 10.18580 + 1.00493I
u = 0.997247 0.392970I
a = 0.90416 + 1.35022I
b = 0.590150 + 0.441101I
3.33424 + 0.63342I 10.18580 1.00493I
u = 0.221545 + 0.858385I
a = 0.287931 0.531907I
b = 1.251610 + 0.253271I
5.11182 1.76571I 6.58449 + 0.22254I
u = 0.221545 0.858385I
a = 0.287931 + 0.531907I
b = 1.251610 0.253271I
5.11182 + 1.76571I 6.58449 0.22254I
u = 0.589578 + 0.609250I
a = 0.697295 0.761609I
b = 0.678123 0.259013I
0.80356 + 2.07411I 6.98577 3.75045I
u = 0.589578 0.609250I
a = 0.697295 + 0.761609I
b = 0.678123 + 0.259013I
0.80356 2.07411I 6.98577 + 3.75045I
u = 1.030730 + 0.548115I
a = 0.835539 0.204114I
b = 0.583449 0.282497I
2.19303 6.66891I 10.29248 + 6.91128I
u = 1.030730 0.548115I
a = 0.835539 + 0.204114I
b = 0.583449 + 0.282497I
2.19303 + 6.66891I 10.29248 6.91128I
u = 0.734119 + 0.278311I
a = 0.73074 + 1.98729I
b = 0.716956 0.485550I
2.27700 + 3.62441I 5.96892 8.49008I
u = 0.734119 0.278311I
a = 0.73074 1.98729I
b = 0.716956 + 0.485550I
2.27700 3.62441I 5.96892 + 8.49008I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.162560 + 0.361615I
a = 1.97304 + 0.61805I
b = 1.51291 + 0.27185I
9.32095 1.76748I 10.54757 + 3.86534I
u = 1.162560 0.361615I
a = 1.97304 0.61805I
b = 1.51291 0.27185I
9.32095 + 1.76748I 10.54757 3.86534I
u = 0.729970
a = 2.88100
b = 1.60781
6.71059 0.932190
u = 1.194930 + 0.516966I
a = 1.79056 1.34493I
b = 1.264080 + 0.439528I
8.14772 + 6.78722I 9.96888 3.95233I
u = 1.194930 0.516966I
a = 1.79056 + 1.34493I
b = 1.264080 0.439528I
8.14772 6.78722I 9.96888 + 3.95233I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
6
· (u
15
4u
13
+ 8u
11
8u
9
+ u
8
+ 4u
7
3u
6
+ 4u
4
3u
2
+ 1)
· (u
27
7u
26
+ ··· 48u + 8)
c
2
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
6
· (u
15
+ 8u
14
+ ··· + 6u + 1)(u
27
+ 13u
26
+ ··· + 224u + 64)
c
3
, c
8
(u
15
u
14
+ ··· u + 1)(u
27
+ u
26
+ ··· + 2u + 1)
· (u
54
u
53
+ ··· 2672u 1393)
c
4
, c
7
(u
15
+ 2u
13
u
12
+ 3u
11
u
10
+ 2u
9
+ u
7
+ 2u
6
3u
5
+ 4u
4
+ 1)
· (u
27
+ 3u
25
+ ··· + 3u + 1)(u
54
3u
53
+ ··· + 946u 229)
c
5
, c
9
(u
15
+ u
14
+ ··· u 1)(u
27
+ u
26
+ ··· + 2u + 1)
· (u
54
u
53
+ ··· 2672u 1393)
c
6
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
6
· (u
15
4u
13
+ 8u
11
8u
9
u
8
+ 4u
7
+ 3u
6
4u
4
+ 3u
2
1)
· (u
27
7u
26
+ ··· 48u + 8)
c
10
((u
3
+ u
2
1)
18
)(u
15
+ 4u
14
+ ··· + 2u
2
1)
· (u
27
27u
26
+ ··· 7424u + 512)
c
11
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
6
· (u
15
+ 4u
13
+ ··· 6u
2
+ 1)(u
27
21u
26
+ ··· 19888u + 2664)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
6
· (y
15
8y
14
+ ··· + 6y 1)(y
27
13y
26
+ ··· + 224y 64)
c
2
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
6
· (y
15
+ 16y
13
+ ··· + 2y 1)(y
27
y
26
+ ··· + 2560y 4096)
c
3
, c
5
, c
8
c
9
(y
15
15y
14
+ ··· + 11y 1)(y
27
25y
26
+ ··· 10y 1)
· (y
54
45y
53
+ ··· + 8846484y + 1940449)
c
4
, c
7
(y
15
+ 4y
14
+ ··· 8y
2
1)(y
27
+ 6y
26
+ ··· + 3y 1)
· (y
54
+ 15y
53
+ ··· + 1004868y + 52441)
c
10
((y
3
y
2
+ 2y 1)
18
)(y
15
4y
14
+ ··· + 4y 1)
· (y
27
5y
26
+ ··· + 2424832y 262144)
c
11
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
6
· (y
15
+ 8y
14
+ ··· + 12y 1)
· (y
27
+ 15y
26
+ ··· + 24224224y 7096896)
23