11a
218
(K11a
218
)
A knot diagram
1
Linearized knot diagam
7 1 11 8 10 2 6 4 3 5 9
Solving Sequence
2,6
7 8 1
3,10
5 11 4 9
c
6
c
7
c
1
c
2
c
5
c
10
c
4
c
9
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.44804 × 10
62
u
78
1.03216 × 10
63
u
77
+ ··· + 3.63230 × 10
62
b + 5.06666 × 10
63
,
4.72952 × 10
63
u
78
1.07582 × 10
64
u
77
+ ··· + 2.54261 × 10
63
a + 7.17584 × 10
64
, u
79
+ u
78
+ ··· 8u 7i
I
u
2
= hu
11
+ 2u
9
+ 4u
7
u
6
+ 5u
5
u
4
+ 3u
3
u
2
+ b + 2u,
2u
13
2u
12
6u
11
5u
10
14u
9
9u
8
19u
7
11u
6
19u
5
8u
4
13u
3
7u
2
+ a 5u 2,
u
14
+ 3u
12
+ 7u
10
u
9
+ 11u
8
2u
7
+ 12u
6
3u
5
+ 10u
4
2u
3
+ 5u
2
u + 1i
* 2 irreducible components of dim
C
= 0, with total 93 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−5.45×10
62
u
78
1.03×10
63
u
77
+· · ·+3.63×10
62
b+5.07×10
63
, 4.73×
10
63
u
78
1.08×10
64
u
77
+· · ·+2.54×10
63
a+7.18×10
64
, u
79
+u
78
+· · ·8u7i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
8
=
u
2
+ 1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
10
=
1.86010u
78
+ 4.23115u
77
+ ··· 46.3492u 28.2223
1.49989u
78
+ 2.84161u
77
+ ··· 33.3985u 13.9489
a
5
=
1.17416u
78
+ 2.07095u
77
+ ··· 29.5282u 10.3400
0.206768u
78
0.785482u
77
+ ··· + 9.53356u + 11.2272
a
11
=
0.609104u
78
+ 0.369573u
77
+ ··· + 8.80543u 8.08874
1.73226u
78
2.17804u
77
+ ··· + 18.6211u + 2.73894
a
4
=
1.64175u
78
+ 1.85665u
77
+ ··· 24.4203u 9.52711
0.573692u
78
2.27635u
77
+ ··· + 22.8621u + 20.9732
a
9
=
1.56053u
78
+ 3.29376u
77
+ ··· 36.4399u 22.2196
0.852462u
78
+ 1.64403u
77
+ ··· 21.4230u 5.42602
a
9
=
1.56053u
78
+ 3.29376u
77
+ ··· 36.4399u 22.2196
0.852462u
78
+ 1.64403u
77
+ ··· 21.4230u 5.42602
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.57564u
78
8.67107u
77
+ ··· + 98.6500u + 77.0521
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
79
+ u
78
+ ··· 8u 7
c
2
, c
7
u
79
+ 25u
78
+ ··· 664u 49
c
3
u
79
+ 7u
78
+ ··· + 2u 1
c
4
, c
8
u
79
2u
78
+ ··· + 347u 71
c
5
, c
10
u
79
u
78
+ ··· 14u
2
1
c
9
u
79
5u
77
+ ··· 249u 83
c
11
u
79
+ 9u
78
+ ··· 4205u 689
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
79
+ 25y
78
+ ··· 664y 49
c
2
, c
7
y
79
+ 65y
78
+ ··· + 132784y 2401
c
3
y
79
7y
78
+ ··· 10y 1
c
4
, c
8
y
79
+ 56y
78
+ ··· 115737y 5041
c
5
, c
10
y
79
+ 45y
78
+ ··· 28y 1
c
9
y
79
10y
78
+ ··· + 155127y 6889
c
11
y
79
29y
78
+ ··· + 14498845y 474721
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.068601 + 0.992204I
a = 0.153424 + 1.337650I
b = 0.691328 + 1.177290I
3.14903 + 3.12627I 0
u = 0.068601 0.992204I
a = 0.153424 1.337650I
b = 0.691328 1.177290I
3.14903 3.12627I 0
u = 0.747557 + 0.710223I
a = 1.241940 0.068757I
b = 0.468963 0.268238I
3.61173 + 0.72947I 0
u = 0.747557 0.710223I
a = 1.241940 + 0.068757I
b = 0.468963 + 0.268238I
3.61173 0.72947I 0
u = 0.718133 + 0.742230I
a = 1.30172 + 1.16845I
b = 0.996894 0.955293I
2.13841 + 2.75328I 0
u = 0.718133 0.742230I
a = 1.30172 1.16845I
b = 0.996894 + 0.955293I
2.13841 2.75328I 0
u = 0.385001 + 0.967084I
a = 0.856191 + 0.719727I
b = 0.062793 + 1.276180I
4.88505 1.08505I 0
u = 0.385001 0.967084I
a = 0.856191 0.719727I
b = 0.062793 1.276180I
4.88505 + 1.08505I 0
u = 0.236787 + 1.021880I
a = 1.30938 1.15749I
b = 0.300280 1.213660I
5.62568 4.91714I 0
u = 0.236787 1.021880I
a = 1.30938 + 1.15749I
b = 0.300280 + 1.213660I
5.62568 + 4.91714I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.294156 + 0.904371I
a = 0.0378805 0.1197230I
b = 0.979850 + 0.015955I
1.42957 5.30340I 0. + 8.18949I
u = 0.294156 0.904371I
a = 0.0378805 + 0.1197230I
b = 0.979850 0.015955I
1.42957 + 5.30340I 0. 8.18949I
u = 0.725101 + 0.823158I
a = 0.364980 + 1.165740I
b = 0.586179 0.930088I
0.91115 + 1.68888I 0
u = 0.725101 0.823158I
a = 0.364980 1.165740I
b = 0.586179 + 0.930088I
0.91115 1.68888I 0
u = 0.588826 + 0.926444I
a = 0.999280 + 0.627418I
b = 0.259716 1.197850I
0.22599 + 2.17222I 0
u = 0.588826 0.926444I
a = 0.999280 0.627418I
b = 0.259716 + 1.197850I
0.22599 2.17222I 0
u = 0.710928 + 0.836978I
a = 2.18368 0.06877I
b = 0.286792 + 0.573885I
3.19613 + 0.36905I 0
u = 0.710928 0.836978I
a = 2.18368 + 0.06877I
b = 0.286792 0.573885I
3.19613 0.36905I 0
u = 0.106082 + 0.890241I
a = 0.369055 + 0.588099I
b = 0.565118 + 0.130913I
1.64796 + 1.63173I 1.15356 4.67450I
u = 0.106082 0.890241I
a = 0.369055 0.588099I
b = 0.565118 0.130913I
1.64796 1.63173I 1.15356 + 4.67450I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.876569 + 0.066661I
a = 0.622530 0.556101I
b = 0.549607 + 1.031330I
2.03962 + 6.66682I 6.74963 6.99085I
u = 0.876569 0.066661I
a = 0.622530 + 0.556101I
b = 0.549607 1.031330I
2.03962 6.66682I 6.74963 + 6.99085I
u = 0.906807 + 0.666792I
a = 0.452346 + 0.331194I
b = 0.561743 1.084000I
6.02916 1.41665I 0
u = 0.906807 0.666792I
a = 0.452346 0.331194I
b = 0.561743 + 1.084000I
6.02916 + 1.41665I 0
u = 0.725122 + 0.874260I
a = 1.30561 + 0.72285I
b = 0.05188 1.88290I
0.23925 2.76678I 0
u = 0.725122 0.874260I
a = 1.30561 0.72285I
b = 0.05188 + 1.88290I
0.23925 + 2.76678I 0
u = 0.847566 + 0.759732I
a = 0.916382 0.975772I
b = 0.469786 + 1.039580I
1.50890 3.98013I 0
u = 0.847566 0.759732I
a = 0.916382 + 0.975772I
b = 0.469786 1.039580I
1.50890 + 3.98013I 0
u = 0.768818 + 0.842684I
a = 0.787145 0.216058I
b = 0.523775 + 1.132210I
5.15403 0.95027I 0
u = 0.768818 0.842684I
a = 0.787145 + 0.216058I
b = 0.523775 1.132210I
5.15403 + 0.95027I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.486696 + 0.703689I
a = 0.519465 + 0.821783I
b = 0.093122 0.577690I
0.36304 + 1.84837I 2.66443 3.35239I
u = 0.486696 0.703689I
a = 0.519465 0.821783I
b = 0.093122 + 0.577690I
0.36304 1.84837I 2.66443 + 3.35239I
u = 0.843432 + 0.790066I
a = 1.72508 + 0.39273I
b = 1.287590 + 0.433064I
8.57301 3.45586I 0
u = 0.843432 0.790066I
a = 1.72508 0.39273I
b = 1.287590 0.433064I
8.57301 + 3.45586I 0
u = 0.909408 + 0.715797I
a = 0.822486 0.850087I
b = 0.75301 + 1.25876I
5.89486 + 10.51700I 0
u = 0.909408 0.715797I
a = 0.822486 + 0.850087I
b = 0.75301 1.25876I
5.89486 10.51700I 0
u = 0.709662 + 0.915793I
a = 1.23890 0.75698I
b = 0.452617 + 0.379590I
2.94594 5.81075I 0
u = 0.709662 0.915793I
a = 1.23890 + 0.75698I
b = 0.452617 0.379590I
2.94594 + 5.81075I 0
u = 0.724913 + 0.913338I
a = 1.94129 + 0.25721I
b = 0.615371 1.136900I
0.63787 + 3.85193I 0
u = 0.724913 0.913338I
a = 1.94129 0.25721I
b = 0.615371 + 1.136900I
0.63787 3.85193I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.272193 + 1.148200I
a = 0.673138 1.136890I
b = 0.539494 1.221250I
2.11575 + 10.45870I 0
u = 0.272193 1.148200I
a = 0.673138 + 1.136890I
b = 0.539494 + 1.221250I
2.11575 10.45870I 0
u = 0.752269 + 0.913216I
a = 2.08253 + 0.73148I
b = 0.449175 + 1.172200I
4.93567 + 6.70197I 0
u = 0.752269 0.913216I
a = 2.08253 0.73148I
b = 0.449175 1.172200I
4.93567 6.70197I 0
u = 0.699416 + 0.965229I
a = 2.35631 0.61292I
b = 1.00524 1.09298I
1.46348 8.20122I 0
u = 0.699416 0.965229I
a = 2.35631 + 0.61292I
b = 1.00524 + 1.09298I
1.46348 + 8.20122I 0
u = 0.088492 + 0.800040I
a = 0.66008 3.50543I
b = 0.198364 0.926764I
0.06134 3.40830I 0.00748 + 5.95558I
u = 0.088492 0.800040I
a = 0.66008 + 3.50543I
b = 0.198364 + 0.926764I
0.06134 + 3.40830I 0.00748 5.95558I
u = 0.072534 + 1.193830I
a = 0.178921 + 1.190570I
b = 0.263590 + 0.843873I
1.193530 0.319368I 0
u = 0.072534 1.193830I
a = 0.178921 1.190570I
b = 0.263590 0.843873I
1.193530 + 0.319368I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.056663 + 0.795280I
a = 1.07684 + 1.56691I
b = 0.23874 + 1.54232I
3.94909 0.33166I 2.88323 2.20171I
u = 0.056663 0.795280I
a = 1.07684 1.56691I
b = 0.23874 1.54232I
3.94909 + 0.33166I 2.88323 + 2.20171I
u = 0.688272 + 0.999750I
a = 1.40266 0.69035I
b = 0.347900 0.472595I
2.72299 6.21170I 0
u = 0.688272 0.999750I
a = 1.40266 + 0.69035I
b = 0.347900 + 0.472595I
2.72299 + 6.21170I 0
u = 0.778280 + 0.975214I
a = 1.04179 1.15319I
b = 1.356540 + 0.352012I
7.99698 + 9.50667I 0
u = 0.778280 0.975214I
a = 1.04179 + 1.15319I
b = 1.356540 0.352012I
7.99698 9.50667I 0
u = 0.903504 + 0.861547I
a = 0.660376 0.226832I
b = 0.502624 0.303555I
8.16830 3.10045I 0
u = 0.903504 0.861547I
a = 0.660376 + 0.226832I
b = 0.502624 + 0.303555I
8.16830 + 3.10045I 0
u = 0.347261 + 1.209130I
a = 0.622118 + 0.380504I
b = 0.341064 + 0.969919I
1.76986 2.28307I 0
u = 0.347261 1.209130I
a = 0.622118 0.380504I
b = 0.341064 0.969919I
1.76986 + 2.28307I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.768557 + 0.996208I
a = 2.12255 0.03776I
b = 0.508968 + 1.098010I
0.77749 + 10.01260I 0
u = 0.768557 0.996208I
a = 2.12255 + 0.03776I
b = 0.508968 1.098010I
0.77749 10.01260I 0
u = 0.865083 + 0.914831I
a = 0.162002 0.696670I
b = 0.026697 + 0.290718I
7.97266 3.20478I 0
u = 0.865083 0.914831I
a = 0.162002 + 0.696670I
b = 0.026697 0.290718I
7.97266 + 3.20478I 0
u = 0.842928 + 0.946030I
a = 0.590128 + 0.065077I
b = 0.541177 0.008044I
7.88914 3.32695I 0
u = 0.842928 0.946030I
a = 0.590128 0.065077I
b = 0.541177 + 0.008044I
7.88914 + 3.32695I 0
u = 0.668593 + 0.213008I
a = 0.641632 0.638273I
b = 0.657782 0.479809I
3.63016 + 1.97736I 9.76414 0.88731I
u = 0.668593 0.213008I
a = 0.641632 + 0.638273I
b = 0.657782 + 0.479809I
3.63016 1.97736I 9.76414 + 0.88731I
u = 0.776485 + 1.042220I
a = 2.05300 + 0.37394I
b = 0.74638 + 1.32056I
4.8754 16.7440I 0
u = 0.776485 1.042220I
a = 2.05300 0.37394I
b = 0.74638 1.32056I
4.8754 + 16.7440I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.762838 + 1.065990I
a = 1.46928 0.52381I
b = 0.495147 1.185170I
4.80363 + 7.58954I 0
u = 0.762838 1.065990I
a = 1.46928 + 0.52381I
b = 0.495147 + 1.185170I
4.80363 7.58954I 0
u = 0.482336 + 0.441392I
a = 1.20543 + 0.91074I
b = 0.492152 0.878703I
0.81950 + 2.03003I 6.05353 3.33812I
u = 0.482336 0.441392I
a = 1.20543 0.91074I
b = 0.492152 + 0.878703I
0.81950 2.03003I 6.05353 + 3.33812I
u = 0.596765 + 0.028691I
a = 0.787991 1.060340I
b = 0.142905 + 1.090580I
2.35254 2.09310I 1.61759 + 3.77424I
u = 0.596765 0.028691I
a = 0.787991 + 1.060340I
b = 0.142905 1.090580I
2.35254 + 2.09310I 1.61759 3.77424I
u = 0.119202 + 0.475498I
a = 2.06498 + 0.81754I
b = 0.577638 0.808331I
0.98268 + 2.41658I 3.66259 + 0.85361I
u = 0.119202 0.475498I
a = 2.06498 0.81754I
b = 0.577638 + 0.808331I
0.98268 2.41658I 3.66259 0.85361I
u = 0.415093
a = 1.43678
b = 0.463470
0.930718 11.0930
12
II.
I
u
2
= hu
11
+2u
9
+· · ·+b+2u, 2u
13
2u
12
+· · ·+a2, u
14
+3u
12
+· · ·u+1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
8
=
u
2
+ 1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
10
=
2u
13
+ 2u
12
+ ··· + 5u + 2
u
11
2u
9
4u
7
+ u
6
5u
5
+ u
4
3u
3
+ u
2
2u
a
5
=
3u
13
+ u
12
+ ··· 6u + 3
u
12
+ 3u
10
+ 7u
8
u
7
+ 10u
6
2u
5
+ 10u
4
3u
3
+ 7u
2
u + 1
a
11
=
2u
13
+ u
12
+ ··· + 4u 1
u
13
u
12
+ ··· u 1
a
4
=
2u
13
+ u
12
+ ··· 3u + 2
u
12
+ 3u
10
+ 7u
8
u
7
+ 10u
6
u
5
+ 10u
4
2u
3
+ 7u
2
+ 1
a
9
=
2u
13
+ u
12
+ ··· + 6u + 1
u
11
2u
9
u
8
4u
7
u
6
5u
5
2u
4
3u
3
2u
2
2u 1
a
9
=
2u
13
+ u
12
+ ··· + 6u + 1
u
11
2u
9
u
8
4u
7
u
6
5u
5
2u
4
3u
3
2u
2
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 8u
13
3u
12
22u
11
9u
10
53u
9
13u
8
77u
7
16u
6
79u
5
6u
4
61u
3
9u
2
21u+3
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
+ 3u
12
+ ··· + u + 1
c
2
, c
7
u
14
+ 6u
13
+ ··· + 9u + 1
c
3
u
14
+ 2u
13
+ u
12
2u
10
4u
9
+ 2u
8
+ u
6
+ 3u
5
3u
4
u + 1
c
4
u
14
u
13
+ ··· + 7u
2
+ 1
c
5
u
14
+ 7u
12
+ ··· + u + 1
c
6
u
14
+ 3u
12
+ ··· u + 1
c
8
u
14
+ u
13
+ ··· + 7u
2
+ 1
c
9
u
14
+ u
13
3u
10
3u
9
+ u
8
+ 2u
6
+ 4u
5
2u
4
+ u
2
2u + 1
c
10
u
14
+ 7u
12
+ ··· u + 1
c
11
u
14
4u
12
+ ··· 6u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
14
+ 6y
13
+ ··· + 9y + 1
c
2
, c
7
y
14
+ 10y
13
+ ··· + y + 1
c
3
y
14
2y
13
+ ··· y + 1
c
4
, c
8
y
14
+ 13y
13
+ ··· + 14y + 1
c
5
, c
10
y
14
+ 14y
13
+ ··· + 13y + 1
c
9
y
14
y
13
+ ··· 2y + 1
c
11
y
14
8y
13
+ ··· 4y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.726429 + 0.738003I
a = 1.353070 0.241803I
b = 0.584789 + 0.795162I
3.27925 1.94202I 6.99263 + 3.48916I
u = 0.726429 0.738003I
a = 1.353070 + 0.241803I
b = 0.584789 0.795162I
3.27925 + 1.94202I 6.99263 3.48916I
u = 0.653577 + 0.866508I
a = 1.42775 1.02270I
b = 0.04408 + 1.69162I
1.39544 2.54104I 3.53419 + 2.88773I
u = 0.653577 0.866508I
a = 1.42775 + 1.02270I
b = 0.04408 1.69162I
1.39544 + 2.54104I 3.53419 2.88773I
u = 0.252602 + 0.846708I
a = 0.614186 1.257430I
b = 0.10455 1.45717I
3.69976 1.12261I 2.04246 + 5.85401I
u = 0.252602 0.846708I
a = 0.614186 + 1.257430I
b = 0.10455 + 1.45717I
3.69976 + 1.12261I 2.04246 5.85401I
u = 0.164460 + 1.120840I
a = 0.734317 1.077060I
b = 0.258541 0.856843I
1.23971 1.45474I 3.50312 + 2.29074I
u = 0.164460 1.120840I
a = 0.734317 + 1.077060I
b = 0.258541 + 0.856843I
1.23971 + 1.45474I 3.50312 2.29074I
u = 0.693530 + 0.982336I
a = 1.97340 + 0.86184I
b = 0.590972 + 0.911227I
2.52164 + 7.39185I 5.20313 8.53818I
u = 0.693530 0.982336I
a = 1.97340 0.86184I
b = 0.590972 0.911227I
2.52164 7.39185I 5.20313 + 8.53818I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.890932 + 0.918447I
a = 0.306117 0.672539I
b = 0.035727 + 0.562759I
7.64720 3.27992I 7.30018 + 4.84584I
u = 0.890932 0.918447I
a = 0.306117 + 0.672539I
b = 0.035727 0.562759I
7.64720 + 3.27992I 7.30018 4.84584I
u = 0.212692 + 0.537116I
a = 0.26634 + 2.51077I
b = 0.377626 0.645284I
1.11150 + 3.22050I 7.09303 7.62197I
u = 0.212692 0.537116I
a = 0.26634 2.51077I
b = 0.377626 + 0.645284I
1.11150 3.22050I 7.09303 + 7.62197I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
14
+ 3u
12
+ ··· + u + 1)(u
79
+ u
78
+ ··· 8u 7)
c
2
, c
7
(u
14
+ 6u
13
+ ··· + 9u + 1)(u
79
+ 25u
78
+ ··· 664u 49)
c
3
(u
14
+ 2u
13
+ u
12
2u
10
4u
9
+ 2u
8
+ u
6
+ 3u
5
3u
4
u + 1)
· (u
79
+ 7u
78
+ ··· + 2u 1)
c
4
(u
14
u
13
+ ··· + 7u
2
+ 1)(u
79
2u
78
+ ··· + 347u 71)
c
5
(u
14
+ 7u
12
+ ··· + u + 1)(u
79
u
78
+ ··· 14u
2
1)
c
6
(u
14
+ 3u
12
+ ··· u + 1)(u
79
+ u
78
+ ··· 8u 7)
c
8
(u
14
+ u
13
+ ··· + 7u
2
+ 1)(u
79
2u
78
+ ··· + 347u 71)
c
9
(u
14
+ u
13
3u
10
3u
9
+ u
8
+ 2u
6
+ 4u
5
2u
4
+ u
2
2u + 1)
· (u
79
5u
77
+ ··· 249u 83)
c
10
(u
14
+ 7u
12
+ ··· u + 1)(u
79
u
78
+ ··· 14u
2
1)
c
11
(u
14
4u
12
+ ··· 6u + 1)(u
79
+ 9u
78
+ ··· 4205u 689)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
14
+ 6y
13
+ ··· + 9y + 1)(y
79
+ 25y
78
+ ··· 664y 49)
c
2
, c
7
(y
14
+ 10y
13
+ ··· + y + 1)(y
79
+ 65y
78
+ ··· + 132784y 2401)
c
3
(y
14
2y
13
+ ··· y + 1)(y
79
7y
78
+ ··· 10y 1)
c
4
, c
8
(y
14
+ 13y
13
+ ··· + 14y + 1)(y
79
+ 56y
78
+ ··· 115737y 5041)
c
5
, c
10
(y
14
+ 14y
13
+ ··· + 13y + 1)(y
79
+ 45y
78
+ ··· 28y 1)
c
9
(y
14
y
13
+ ··· 2y + 1)(y
79
10y
78
+ ··· + 155127y 6889)
c
11
(y
14
8y
13
+ ··· 4y + 1)(y
79
29y
78
+ ··· + 1.44988 × 10
7
y 474721)
19