11a
219
(K11a
219
)
A knot diagram
1
Linearized knot diagam
7 1 9 11 10 2 6 4 3 5 8
Solving Sequence
4,11 5,8
9 1 3 2 10 6 7
c
4
c
8
c
11
c
3
c
2
c
10
c
5
c
7
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
20
u
19
+ ··· + 8a + 1, u
21
+ 13u
19
+ ··· + 12u
3
1i
I
u
2
= h−2624442537u
27
+ 1988686630u
26
+ ··· + 16455396275b 10223804083,
19079838812u
27
18444082905u
26
+ ··· + 16455396275a + 108956181733,
u
28
u
27
+ ··· + 6u + 1i
I
u
3
= hb + u, a
3
+ a
2
+ 2a + 1, u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 55 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
20
u
19
+ · · · + 8a + 1, u
21
+ 13u
19
+ · · · + 12u
3
1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
8
=
1
8
u
20
+
1
8
u
19
+ ···
25
8
u
1
8
u
a
9
=
1
8
u
20
+
1
8
u
19
+ ···
17
8
u
1
8
u
a
1
=
1
8
u
20
1
8
u
19
+ ···
3
8
u
1
8
1
8
u
20
1
8
u
19
+ ··· +
9
8
u +
1
8
a
3
=
1
8
u
20
1
8
u
19
+ ···
1
8
u +
9
8
u
2
a
2
=
3
8
u
20
+
5
8
u
19
+ ··· +
7
8
u
1
8
1
4
u
18
1
4
u
17
+ ···
1
4
u +
1
4
a
10
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
7
=
1
8
u
20
+
1
8
u
19
+ ···
17
8
u
1
8
1
8
u
20
1
8
u
19
+ ··· +
9
8
u +
1
8
a
7
=
1
8
u
20
+
1
8
u
19
+ ···
17
8
u
1
8
1
8
u
20
1
8
u
19
+ ··· +
9
8
u +
1
8
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
5
2
u
20
+ u
19
+
65
2
u
18
+ 15u
17
+ 177u
16
+
181
2
u
15
+
1023
2
u
14
+ 280u
13
+ 806u
12
+
907
2
u
11
+
599u
10
+ 316u
9
+
119
2
u
8
27
2
u
7
88u
6
49u
5
+
99
2
u
4
+
129
2
u
3
+ 17u
2
+ 12u +
11
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
21
+ 3u
20
+ ··· + 3u 2
c
2
, c
7
u
21
+ 7u
20
+ ··· + 21u 4
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
21
+ 13u
19
+ ··· + 12u
3
1
c
11
u
21
15u
20
+ ··· + 2103u 266
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
21
+ 7y
20
+ ··· + 21y 4
c
2
, c
7
y
21
+ 15y
20
+ ··· + 1137y 16
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
21
+ 26y
20
+ ··· + 24y
2
1
c
11
y
21
+ 3y
20
+ ··· + 343765y 70756
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.626749 + 0.333863I
a = 1.66451 0.51604I
b = 0.626749 + 0.333863I
2.49171 5.86529I 9.54952 + 8.01834I
u = 0.626749 0.333863I
a = 1.66451 + 0.51604I
b = 0.626749 0.333863I
2.49171 + 5.86529I 9.54952 8.01834I
u = 0.629746 + 0.248411I
a = 1.60683 0.39158I
b = 0.629746 + 0.248411I
3.16640 + 0.40908I 11.72672 2.09398I
u = 0.629746 0.248411I
a = 1.60683 + 0.39158I
b = 0.629746 0.248411I
3.16640 0.40908I 11.72672 + 2.09398I
u = 0.020126 + 1.386560I
a = 0.15798 + 1.61235I
b = 0.020126 + 1.386560I
3.09312 3.11987I 1.81385 + 2.72222I
u = 0.020126 1.386560I
a = 0.15798 1.61235I
b = 0.020126 1.386560I
3.09312 + 3.11987I 1.81385 2.72222I
u = 0.049869 + 0.513457I
a = 0.28009 1.88738I
b = 0.049869 + 0.513457I
1.38918 + 2.68088I 7.84813 2.28119I
u = 0.049869 0.513457I
a = 0.28009 + 1.88738I
b = 0.049869 0.513457I
1.38918 2.68088I 7.84813 + 2.28119I
u = 0.358971 + 0.369522I
a = 1.22004 0.88408I
b = 0.358971 + 0.369522I
1.99273 1.21629I 2.57418 + 5.92996I
u = 0.358971 0.369522I
a = 1.22004 + 0.88408I
b = 0.358971 0.369522I
1.99273 + 1.21629I 2.57418 5.92996I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.31097 + 1.49970I
a = 1.257710 + 0.336801I
b = 0.31097 + 1.49970I
8.25449 7.57688I 3.21336 + 3.12167I
u = 0.31097 1.49970I
a = 1.257710 0.336801I
b = 0.31097 1.49970I
8.25449 + 7.57688I 3.21336 3.12167I
u = 0.18915 + 1.52129I
a = 0.833836 + 0.568249I
b = 0.18915 + 1.52129I
10.20410 4.07649I 2.56533 + 2.84794I
u = 0.18915 1.52129I
a = 0.833836 0.568249I
b = 0.18915 1.52129I
10.20410 + 4.07649I 2.56533 2.84794I
u = 0.33859 + 1.51855I
a = 1.273830 + 0.223483I
b = 0.33859 + 1.51855I
9.5708 + 13.4578I 1.56507 7.58317I
u = 0.33859 1.51855I
a = 1.273830 0.223483I
b = 0.33859 1.51855I
9.5708 13.4578I 1.56507 + 7.58317I
u = 0.14072 + 1.58052I
a = 0.556156 + 0.432838I
b = 0.14072 + 1.58052I
12.61950 0.61749I 1.09619 + 1.91653I
u = 0.14072 1.58052I
a = 0.556156 0.432838I
b = 0.14072 1.58052I
12.61950 + 0.61749I 1.09619 1.91653I
u = 0.25937 + 1.56915I
a = 0.961257 + 0.271014I
b = 0.25937 + 1.56915I
15.0783 + 6.7163I 2.88981 3.97813I
u = 0.25937 1.56915I
a = 0.961257 0.271014I
b = 0.25937 1.56915I
15.0783 6.7163I 2.88981 + 3.97813I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.374847
a = 1.03218
b = 0.374847
0.610872 16.2600
7
II.
I
u
2
= h−2.62 × 10
9
u
27
+ 1.99 × 10
9
u
26
+ · · · + 1.65 × 10
10
b 1.02 × 10
10
, 1.91 ×
10
10
u
27
1.84×10
10
u
26
+· · ·+1.65×10
10
a+1.09×10
11
, u
28
u
27
+· · ·+6u+1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
8
=
1.15949u
27
+ 1.12085u
26
+ ··· 31.4295u 6.62130
0.159488u
27
0.120853u
26
+ ··· + 5.42946u + 0.621304
a
9
=
u
27
+ u
26
+ ··· 26u 6
0.159488u
27
0.120853u
26
+ ··· + 5.42946u + 0.621304
a
1
=
1.49816u
27
+ 1.73027u
26
+ ··· 37.4676u 7.20397
0.338676u
27
0.609413u
26
+ ··· + 7.03817u + 0.582669
a
3
=
0.621304u
27
+ 0.780792u
26
+ ··· 15.8797u + 2.70164
0.0386351u
27
0.140553u
26
+ ··· + 0.335626u 0.840512
a
2
=
0.251205u
27
+ 0.244139u
26
+ ··· 4.73991u 4.26868
0.464204u
27
0.736552u
26
+ ··· + 3.57003u + 0.996329
a
10
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
7
=
0.860293u
27
+ 0.936481u
26
+ ··· 23.2248u 5.89350
0.0244857u
27
0.155424u
26
+ ··· + 4.35668u + 0.358891
a
7
=
0.860293u
27
+ 0.936481u
26
+ ··· 23.2248u 5.89350
0.0244857u
27
0.155424u
26
+ ··· + 4.35668u + 0.358891
(ii) Obstruction class = 1
(iii) Cusp Shapes =
7485203784
16455396275
u
27
4244606112
3291079255
u
26
+ ···
308226995468
16455396275
u +
121631108806
16455396275
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
14
u
13
+ ··· + u + 1)
2
c
2
, c
7
, c
11
(u
14
+ 5u
13
+ ··· + 3u + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
28
u
27
+ ··· + 6u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
14
+ 5y
13
+ ··· + 3y + 1)
2
c
2
, c
7
, c
11
(y
14
+ 9y
13
+ ··· + 15y + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
28
+ 23y
27
+ ··· + 16y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.903414 + 0.423724I
a = 1.12702 + 1.02376I
b = 0.21970 1.44931I
3.28987 + 8.93586I 4.00000 7.26077I
u = 0.903414 0.423724I
a = 1.12702 1.02376I
b = 0.21970 + 1.44931I
3.28987 8.93586I 4.00000 + 7.26077I
u = 0.821921 + 0.594799I
a = 0.892891 + 0.877803I
b = 0.09440 1.45565I
7.93259 + 2.76747I 1.41762 3.21377I
u = 0.821921 0.594799I
a = 0.892891 0.877803I
b = 0.09440 + 1.45565I
7.93259 2.76747I 1.41762 + 3.21377I
u = 0.709754 + 0.808180I
a = 0.550947 + 0.736144I
b = 0.06255 1.43472I
4.48016 3.41271I 1.89400 + 2.62516I
u = 0.709754 0.808180I
a = 0.550947 0.736144I
b = 0.06255 + 1.43472I
4.48016 + 3.41271I 1.89400 2.62516I
u = 0.830600 + 0.398708I
a = 1.18688 + 0.93008I
b = 0.20839 1.39977I
2.09958 3.41271I 6.10600 + 2.62516I
u = 0.830600 0.398708I
a = 1.18688 0.93008I
b = 0.20839 + 1.39977I
2.09958 + 3.41271I 6.10600 2.62516I
u = 0.081869 + 0.917517I
a = 0.228572 1.240560I
b = 0.132090 + 0.159270I
1.35286 + 2.76747I 9.41762 3.21377I
u = 0.081869 0.917517I
a = 0.228572 + 1.240560I
b = 0.132090 0.159270I
1.35286 2.76747I 9.41762 + 3.21377I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.428554 + 0.809341I
a = 0.422476 + 0.298820I
b = 0.088503 1.263820I
3.31269 1.37770I 3.11410 + 4.12207I
u = 0.428554 0.809341I
a = 0.422476 0.298820I
b = 0.088503 + 1.263820I
3.31269 + 1.37770I 3.11410 4.12207I
u = 0.503703 + 0.626414I
a = 0.789243 + 0.320757I
b = 0.009651 1.290270I
3.26705 1.37770I 4.88590 + 4.12207I
u = 0.503703 0.626414I
a = 0.789243 0.320757I
b = 0.009651 + 1.290270I
3.26705 + 1.37770I 4.88590 4.12207I
u = 0.088503 + 1.263820I
a = 0.373414 + 0.021953I
b = 0.428554 0.809341I
3.31269 + 1.37770I 3.11410 4.12207I
u = 0.088503 1.263820I
a = 0.373414 0.021953I
b = 0.428554 + 0.809341I
3.31269 1.37770I 3.11410 + 4.12207I
u = 0.009651 + 1.290270I
a = 0.509500 0.148574I
b = 0.503703 0.626414I
3.26705 + 1.37770I 4.88590 4.12207I
u = 0.009651 1.290270I
a = 0.509500 + 0.148574I
b = 0.503703 + 0.626414I
3.26705 1.37770I 4.88590 + 4.12207I
u = 0.20839 + 1.39977I
a = 0.934651 0.300202I
b = 0.830600 0.398708I
2.09958 + 3.41271I 6.10600 2.62516I
u = 0.20839 1.39977I
a = 0.934651 + 0.300202I
b = 0.830600 + 0.398708I
2.09958 3.41271I 6.10600 + 2.62516I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.06255 + 1.43472I
a = 0.679426 + 0.112500I
b = 0.709754 0.808180I
4.48016 + 3.41271I 1.89400 2.62516I
u = 0.06255 1.43472I
a = 0.679426 0.112500I
b = 0.709754 + 0.808180I
4.48016 3.41271I 1.89400 + 2.62516I
u = 0.09440 + 1.45565I
a = 0.866285 0.089303I
b = 0.821921 0.594799I
7.93259 2.76747I 1.41762 + 3.21377I
u = 0.09440 1.45565I
a = 0.866285 + 0.089303I
b = 0.821921 + 0.594799I
7.93259 + 2.76747I 1.41762 3.21377I
u = 0.21970 + 1.44931I
a = 1.005660 0.250758I
b = 0.903414 0.423724I
3.28987 8.93586I 4.00000 + 7.26077I
u = 0.21970 1.44931I
a = 1.005660 + 0.250758I
b = 0.903414 + 0.423724I
3.28987 + 8.93586I 4.00000 7.26077I
u = 0.132090 + 0.159270I
a = 3.16703 4.63750I
b = 0.081869 + 0.917517I
1.35286 + 2.76747I 9.41762 3.21377I
u = 0.132090 0.159270I
a = 3.16703 + 4.63750I
b = 0.081869 0.917517I
1.35286 2.76747I 9.41762 + 3.21377I
13
III. I
u
3
= hb + u, a
3
+ a
2
+ 2a + 1, u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
1
a
8
=
a
u
a
9
=
a u
u
a
1
=
a
2
u
a + u
a
3
=
au
1
a
2
=
a
2
u + au + u
a
2
au 1
a
10
=
u
0
a
6
=
0
1
a
7
=
a
a u
a
7
=
a
a u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
2
4a 4
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
6
+ u
4
+ 2u
2
+ 1
c
2
, c
7
(u
3
+ u
2
+ 2u + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(u
2
+ 1)
3
c
11
u
6
3u
4
+ 2u
2
+ 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
3
+ y
2
+ 2y + 1)
2
c
2
, c
7
(y
3
+ 3y
2
+ 2y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y + 1)
6
c
11
(y
3
3y
2
+ 2y + 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.215080 + 1.307140I
b = 1.000000I
0.26574 + 2.82812I 3.50976 2.97945I
u = 1.000000I
a = 0.215080 1.307140I
b = 1.000000I
0.26574 2.82812I 3.50976 + 2.97945I
u = 1.000000I
a = 0.569840
b = 1.000000I
4.40332 3.01950
u = 1.000000I
a = 0.215080 + 1.307140I
b = 1.000000I
0.26574 + 2.82812I 3.50976 2.97945I
u = 1.000000I
a = 0.215080 1.307140I
b = 1.000000I
0.26574 2.82812I 3.50976 + 2.97945I
u = 1.000000I
a = 0.569840
b = 1.000000I
4.40332 3.01950
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
6
+ u
4
+ 2u
2
+ 1)(u
14
u
13
+ ··· + u + 1)
2
(u
21
+ 3u
20
+ ··· + 3u 2)
c
2
, c
7
((u
3
+ u
2
+ 2u + 1)
2
)(u
14
+ 5u
13
+ ··· + 3u + 1)
2
· (u
21
+ 7u
20
+ ··· + 21u 4)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
((u
2
+ 1)
3
)(u
21
+ 13u
19
+ ··· + 12u
3
1)(u
28
u
27
+ ··· + 6u + 1)
c
11
(u
6
3u
4
+ 2u
2
+ 1)(u
14
+ 5u
13
+ ··· + 3u + 1)
2
· (u
21
15u
20
+ ··· + 2103u 266)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
((y
3
+ y
2
+ 2y + 1)
2
)(y
14
+ 5y
13
+ ··· + 3y + 1)
2
· (y
21
+ 7y
20
+ ··· + 21y 4)
c
2
, c
7
((y
3
+ 3y
2
+ 2y 1)
2
)(y
14
+ 9y
13
+ ··· + 15y + 1)
2
· (y
21
+ 15y
20
+ ··· + 1137y 16)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
((y + 1)
6
)(y
21
+ 26y
20
+ ··· + 24y
2
1)(y
28
+ 23y
27
+ ··· + 16y + 1)
c
11
((y
3
3y
2
+ 2y + 1)
2
)(y
14
+ 9y
13
+ ··· + 15y + 1)
2
· (y
21
+ 3y
20
+ ··· + 343765y 70756)
19