11a
220
(K11a
220
)
A knot diagram
1
Linearized knot diagam
6 1 10 9 7 2 5 11 3 4 8
Solving Sequence
4,11
10 3 9 5 8 1 2 7 6
c
10
c
3
c
9
c
4
c
8
c
11
c
2
c
7
c
6
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
42
+ u
41
+ ··· 3u 1i
* 1 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
42
+ u
41
+ · · · 3u 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
5
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
8
=
u
4
+ u
2
+ 1
u
4
2u
2
a
1
=
u
8
3u
6
+ u
4
+ 2u
2
+ 1
u
8
+ 4u
6
4u
4
a
2
=
u
19
+ 8u
17
24u
15
+ 30u
13
7u
11
10u
9
4u
7
+ 6u
5
+ 3u
3
+ 2u
u
19
9u
17
+ 32u
15
55u
13
+ 43u
11
9u
9
4u
5
u
3
+ u
a
7
=
u
16
+ 7u
14
19u
12
+ 24u
10
13u
8
+ 2u
6
2u
4
+ 2u
2
+ 1
u
18
8u
16
+ 25u
14
36u
12
+ 19u
10
+ 4u
8
2u
6
2u
4
3u
2
a
6
=
u
27
+ 12u
25
+ ··· u
3
2u
u
29
13u
27
+ ··· + 5u
3
+ u
a
6
=
u
27
+ 12u
25
+ ··· u
3
2u
u
29
13u
27
+ ··· + 5u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
39
+ 72u
37
4u
36
584u
35
+ 68u
34
+ 2804u
33
516u
32
8800u
31
+ 2288u
30
+
18804u
29
6508u
28
27664u
27
+12240u
26
+27920u
25
15080u
24
19668u
23
+11628u
22
+
11364u
21
5344u
20
7448u
19
+2056u
18
+4732u
17
1372u
16
1840u
15
+300u
14
+420u
13
+
420u
12
76u
11
200u
10
84u
9
+160u
8
+76u
7
112u
6
52u
5
20u
4
+24u
3
24u
2
12u14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
42
u
41
+ ··· u 1
c
2
, c
5
, c
7
u
42
+ 11u
41
+ ··· + 3u + 1
c
3
, c
9
, c
10
u
42
+ u
41
+ ··· 3u 1
c
4
u
42
3u
41
+ ··· + 61u + 39
c
8
, c
11
u
42
+ 7u
41
+ ··· + 279u + 23
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
42
11y
41
+ ··· 3y + 1
c
2
, c
5
, c
7
y
42
+ 41y
41
+ ··· 11y + 1
c
3
, c
9
, c
10
y
42
39y
41
+ ··· 3y + 1
c
4
y
42
11y
41
+ ··· 25951y + 1521
c
8
, c
11
y
42
+ 29y
41
+ ··· 14039y + 529
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.196810 + 0.224203I
4.01809 + 0.23438I 4.86393 0.79093I
u = 1.196810 0.224203I
4.01809 0.23438I 4.86393 + 0.79093I
u = 0.356883 + 0.692055I
3.38201 9.13654I 5.22617 + 8.05199I
u = 0.356883 0.692055I
3.38201 + 9.13654I 5.22617 8.05199I
u = 0.341594 + 0.685182I
3.89441 + 3.00577I 4.12276 3.17486I
u = 0.341594 0.685182I
3.89441 3.00577I 4.12276 + 3.17486I
u = 1.233130 + 0.069457I
2.15848 + 0.53603I 5.34890 + 0.I
u = 1.233130 0.069457I
2.15848 0.53603I 5.34890 + 0.I
u = 1.217450 + 0.233216I
3.86157 6.43991I 5.27816 + 6.02462I
u = 1.217450 0.233216I
3.86157 + 6.43991I 5.27816 6.02462I
u = 0.396277 + 0.634373I
3.48205 4.78463I 11.04017 + 7.62920I
u = 0.396277 0.634373I
3.48205 + 4.78463I 11.04017 7.62920I
u = 0.556137 + 0.493828I
2.57048 + 5.10842I 7.05988 2.20532I
u = 0.556137 0.493828I
2.57048 5.10842I 7.05988 + 2.20532I
u = 0.454805 + 0.560740I
3.76676 + 0.88407I 12.38985 0.56473I
u = 0.454805 0.560740I
3.76676 0.88407I 12.38985 + 0.56473I
u = 0.553895 + 0.455920I
3.00179 + 0.90271I 6.25769 2.96370I
u = 0.553895 0.455920I
3.00179 0.90271I 6.25769 + 2.96370I
u = 1.305380 + 0.145441I
3.32923 3.99615I 9.76353 + 7.26560I
u = 1.305380 0.145441I
3.32923 + 3.99615I 9.76353 7.26560I
u = 0.011445 + 0.679358I
7.60462 + 3.09519I 0.01509 2.78190I
u = 0.011445 0.679358I
7.60462 3.09519I 0.01509 + 2.78190I
u = 0.361045 + 0.570627I
0.76961 + 1.72495I 4.78052 3.91512I
u = 0.361045 0.570627I
0.76961 1.72495I 4.78052 + 3.91512I
u = 1.34637
5.74682 16.7140
u = 1.44469 + 0.15665I
3.29340 3.04757I 0
u = 1.44469 0.15665I
3.29340 + 3.04757I 0
u = 1.43643 + 0.22136I
6.53816 4.66456I 0
u = 1.43643 0.22136I
6.53816 + 4.66456I 0
u = 1.43871 + 0.26142I
1.81787 6.45853I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43871 0.26142I
1.81787 + 6.45853I 0
u = 0.098085 + 0.527806I
1.00543 + 1.56832I 1.50314 6.19843I
u = 0.098085 0.527806I
1.00543 1.56832I 1.50314 + 6.19843I
u = 1.44577 + 0.26317I
2.40746 + 12.62150I 0
u = 1.44577 0.26317I
2.40746 12.62150I 0
u = 1.46178 + 0.16297I
3.85638 2.79254I 0
u = 1.46178 0.16297I
3.85638 + 2.79254I 0
u = 1.45781 + 0.20477I
9.89796 + 1.92247I 0
u = 1.45781 0.20477I
9.89796 1.92247I 0
u = 1.45327 + 0.23647I
9.43094 + 7.97441I 0
u = 1.45327 0.23647I
9.43094 7.97441I 0
u = 0.330600
0.781422 13.7110
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
42
u
41
+ ··· u 1
c
2
, c
5
, c
7
u
42
+ 11u
41
+ ··· + 3u + 1
c
3
, c
9
, c
10
u
42
+ u
41
+ ··· 3u 1
c
4
u
42
3u
41
+ ··· + 61u + 39
c
8
, c
11
u
42
+ 7u
41
+ ··· + 279u + 23
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
42
11y
41
+ ··· 3y + 1
c
2
, c
5
, c
7
y
42
+ 41y
41
+ ··· 11y + 1
c
3
, c
9
, c
10
y
42
39y
41
+ ··· 3y + 1
c
4
y
42
11y
41
+ ··· 25951y + 1521
c
8
, c
11
y
42
+ 29y
41
+ ··· 14039y + 529
8