11a
222
(K11a
222
)
A knot diagram
1
Linearized knot diagam
7 1 11 10 8 2 5 6 3 4 9
Solving Sequence
2,6
7 1
3,9
10 8 5 4 11
c
6
c
1
c
2
c
9
c
8
c
5
c
4
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.72396 × 10
40
u
52
2.67316 × 10
41
u
51
+ ··· + 2.67330 × 10
41
b + 1.99338 × 10
42
,
4.74949 × 10
40
u
52
+ 1.41444 × 10
41
u
51
+ ··· + 1.06932 × 10
42
a 1.40219 × 10
42
, u
53
+ u
52
+ ··· 12u 8i
I
v
1
= ha, b 1, v
3
+ v
2
1i
* 2 irreducible components of dim
C
= 0, with total 56 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.72×10
40
u
52
2.67×10
41
u
51
+· · ·+2.67×10
41
b+1.99×10
42
, 4.75×
10
40
u
52
+1.41×10
41
u
51
+· · ·+1.07×10
42
a1.40×10
42
, u
53
+u
52
+· · ·12u8i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
9
=
0.0444159u
52
0.132274u
51
+ ··· + 1.64666u + 1.31129
0.139302u
52
+ 0.999947u
51
+ ··· 7.49767u 7.45663
a
10
=
0.343615u
52
+ 0.405811u
51
+ ··· 0.582641u 2.59994
0.279844u
52
+ 1.23840u
51
+ ··· 9.65395u 10.2736
a
8
=
0.0948858u
52
+ 0.867673u
51
+ ··· 5.85102u 6.14534
0.139302u
52
+ 0.999947u
51
+ ··· 7.49767u 7.45663
a
5
=
0.0948858u
52
+ 0.867673u
51
+ ··· 5.85102u 6.14534
0.275865u
52
0.199028u
51
+ ··· 2.53486u + 1.27433
a
4
=
1.49188u
52
0.252221u
51
+ ··· + 12.9241u + 1.42483
0.260130u
52
0.116987u
51
+ ··· + 1.92031u 1.17979
a
11
=
0.424578u
52
+ 0.931561u
51
+ ··· 9.23571u 8.47524
0.273370u
52
+ 0.479526u
51
+ ··· 2.54983u 4.25728
a
11
=
0.424578u
52
+ 0.931561u
51
+ ··· 9.23571u 8.47524
0.273370u
52
+ 0.479526u
51
+ ··· 2.54983u 4.25728
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.353691u
52
0.908611u
51
+ ··· + 0.108906u + 7.17724
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
53
+ u
52
+ ··· 12u 8
c
2
u
53
+ 21u
52
+ ··· 112u 64
c
3
, c
4
, c
10
u
53
+ 2u
52
+ ··· 3u 1
c
5
, c
7
, c
8
u
53
4u
52
+ ··· + 6u 1
c
9
u
53
2u
52
+ ··· 3u 1
c
11
u
53
+ 12u
52
+ ··· 1235u 131
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
53
+ 21y
52
+ ··· 112y 64
c
2
y
53
+ 17y
52
+ ··· + 167168y 4096
c
3
, c
4
, c
10
y
53
+ 48y
52
+ ··· + y 1
c
5
, c
7
, c
8
y
53
46y
52
+ ··· + 38y 1
c
9
y
53
+ 54y
51
+ ··· + y 1
c
11
y
53
+ 12y
52
+ ··· 263187y 17161
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.098959 + 0.985230I
a = 0.216031 0.691134I
b = 0.741431 + 0.530945I
6.86405 3.34890I 5.53237 + 3.71045I
u = 0.098959 0.985230I
a = 0.216031 + 0.691134I
b = 0.741431 0.530945I
6.86405 + 3.34890I 5.53237 3.71045I
u = 0.484801 + 0.904145I
a = 0.86642 2.04538I
b = 1.271870 + 0.230719I
0.82302 + 2.29845I 2.07591 2.82759I
u = 0.484801 0.904145I
a = 0.86642 + 2.04538I
b = 1.271870 0.230719I
0.82302 2.29845I 2.07591 + 2.82759I
u = 0.665810 + 0.798402I
a = 0.568425 + 1.140550I
b = 0.077045 0.713159I
0.59121 + 2.50996I 4.33610 3.95071I
u = 0.665810 0.798402I
a = 0.568425 1.140550I
b = 0.077045 + 0.713159I
0.59121 2.50996I 4.33610 + 3.95071I
u = 0.704489 + 0.647178I
a = 0.750323 1.123850I
b = 0.034455 + 0.645365I
2.99577 + 0.83630I 8.46469 1.37155I
u = 0.704489 0.647178I
a = 0.750323 + 1.123850I
b = 0.034455 0.645365I
2.99577 0.83630I 8.46469 + 1.37155I
u = 0.701831 + 0.644298I
a = 0.707620 + 0.370746I
b = 1.161210 0.306433I
2.68045 + 1.19639I 0.561902 0.388264I
u = 0.701831 0.644298I
a = 0.707620 0.370746I
b = 1.161210 + 0.306433I
2.68045 1.19639I 0.561902 + 0.388264I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.438735 + 0.954883I
a = 0.519557 + 0.602280I
b = 0.993065 0.486660I
5.75404 4.81132I 3.33331 + 4.06462I
u = 0.438735 0.954883I
a = 0.519557 0.602280I
b = 0.993065 + 0.486660I
5.75404 + 4.81132I 3.33331 4.06462I
u = 0.456523 + 0.829696I
a = 0.527363 0.500478I
b = 1.006360 + 0.404023I
0.53651 + 1.57348I 1.80074 4.58385I
u = 0.456523 0.829696I
a = 0.527363 + 0.500478I
b = 1.006360 0.404023I
0.53651 1.57348I 1.80074 + 4.58385I
u = 0.576999 + 0.889147I
a = 0.435650 + 1.098150I
b = 0.180982 0.721453I
0.38779 + 2.33704I 2.43384 2.57524I
u = 0.576999 0.889147I
a = 0.435650 1.098150I
b = 0.180982 + 0.721453I
0.38779 2.33704I 2.43384 + 2.57524I
u = 0.753024 + 0.562381I
a = 0.86895 + 1.15997I
b = 0.115897 0.626414I
1.92655 4.26986I 3.38600 + 2.83654I
u = 0.753024 0.562381I
a = 0.86895 1.15997I
b = 0.115897 + 0.626414I
1.92655 + 4.26986I 3.38600 2.83654I
u = 1.030490 + 0.261952I
a = 0.910866 0.146722I
b = 1.337480 + 0.124077I
8.23681 + 0.97965I 4.65901 0.74482I
u = 1.030490 0.261952I
a = 0.910866 + 0.146722I
b = 1.337480 0.124077I
8.23681 0.97965I 4.65901 + 0.74482I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.388639 + 0.850959I
a = 1.37535 + 2.10142I
b = 1.248240 0.181646I
5.29869 + 1.45751I 3.56392 + 1.11425I
u = 0.388639 0.850959I
a = 1.37535 2.10142I
b = 1.248240 + 0.181646I
5.29869 1.45751I 3.56392 1.11425I
u = 0.412964 + 1.005730I
a = 0.231844 1.026890I
b = 0.346311 + 0.718386I
5.68668 1.06282I 2.80690 + 2.95348I
u = 0.412964 1.005730I
a = 0.231844 + 1.026890I
b = 0.346311 0.718386I
5.68668 + 1.06282I 2.80690 2.95348I
u = 0.961697 + 0.529123I
a = 0.870380 0.301578I
b = 1.299930 + 0.254117I
1.18376 4.09953I 2.32118 + 4.98239I
u = 0.961697 0.529123I
a = 0.870380 + 0.301578I
b = 1.299930 0.254117I
1.18376 + 4.09953I 2.32118 4.98239I
u = 0.815444 + 0.371656I
a = 0.786076 + 0.206543I
b = 1.231550 0.172173I
2.47497 + 0.74735I 0.90212 + 1.24909I
u = 0.815444 0.371656I
a = 0.786076 0.206543I
b = 1.231550 + 0.172173I
2.47497 0.74735I 0.90212 1.24909I
u = 0.580487 + 0.976562I
a = 0.46963 + 1.90355I
b = 1.306780 0.280326I
3.72441 6.08956I 1.10463 + 6.46640I
u = 0.580487 0.976562I
a = 0.46963 1.90355I
b = 1.306780 + 0.280326I
3.72441 + 6.08956I 1.10463 6.46640I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.041700 + 0.533025I
a = 0.917846 + 0.303340I
b = 1.340090 0.256972I
6.53406 + 7.50813I 2.48060 5.10060I
u = 1.041700 0.533025I
a = 0.917846 0.303340I
b = 1.340090 + 0.256972I
6.53406 7.50813I 2.48060 + 5.10060I
u = 0.633586 + 0.994698I
a = 0.371306 1.203140I
b = 0.199005 + 0.815326I
1.93858 5.99540I 5.14118 + 7.31361I
u = 0.633586 0.994698I
a = 0.371306 + 1.203140I
b = 0.199005 0.815326I
1.93858 + 5.99540I 5.14118 7.31361I
u = 0.053370 + 0.778256I
a = 0.099463 + 0.457828I
b = 0.673274 0.340918I
1.43718 + 1.12513I 2.70988 5.24060I
u = 0.053370 0.778256I
a = 0.099463 0.457828I
b = 0.673274 + 0.340918I
1.43718 1.12513I 2.70988 + 5.24060I
u = 0.634803 + 1.049780I
a = 0.326864 + 1.231490I
b = 0.224599 0.849112I
3.39969 + 9.56118I 0. 7.56251I
u = 0.634803 1.049780I
a = 0.326864 1.231490I
b = 0.224599 + 0.849112I
3.39969 9.56118I 0. + 7.56251I
u = 0.061506 + 1.244360I
a = 0.819931 + 0.179681I
b = 1.44045 0.02930I
8.22882 1.96670I 4.21460 + 3.59094I
u = 0.061506 1.244360I
a = 0.819931 0.179681I
b = 1.44045 + 0.02930I
8.22882 + 1.96670I 4.21460 3.59094I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.630774 + 1.106670I
a = 0.22899 + 1.62310I
b = 1.372550 0.306311I
4.53517 6.09494I 0
u = 0.630774 1.106670I
a = 0.22899 1.62310I
b = 1.372550 + 0.306311I
4.53517 + 6.09494I 0
u = 0.564987 + 1.202570I
a = 0.252964 1.360110I
b = 1.42026 + 0.27304I
11.29940 + 4.62469I 0
u = 0.564987 1.202570I
a = 0.252964 + 1.360110I
b = 1.42026 0.27304I
11.29940 4.62469I 0
u = 0.698514 + 1.133990I
a = 0.07006 1.62273I
b = 1.38677 + 0.34044I
3.08458 + 10.16490I 0
u = 0.698514 1.133990I
a = 0.07006 + 1.62273I
b = 1.38677 0.34044I
3.08458 10.16490I 0
u = 0.109910 + 1.333410I
a = 0.563705 0.274434I
b = 1.48292 + 0.05239I
14.2996 + 4.8556I 0
u = 0.109910 1.333410I
a = 0.563705 + 0.274434I
b = 1.48292 0.05239I
14.2996 4.8556I 0
u = 0.723673 + 1.167980I
a = 0.00012 + 1.57826I
b = 1.40426 0.35282I
8.5679 13.8903I 0
u = 0.723673 1.167980I
a = 0.00012 1.57826I
b = 1.40426 + 0.35282I
8.5679 + 13.8903I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.546347 + 0.172932I
a = 1.47434 0.57598I
b = 0.248192 + 0.218926I
3.39404 2.40292I 4.22803 + 2.59091I
u = 0.546347 0.172932I
a = 1.47434 + 0.57598I
b = 0.248192 0.218926I
3.39404 + 2.40292I 4.22803 2.59091I
u = 0.394055
a = 1.34884
b = 0.159324
0.852216 12.0640
10
II. I
v
1
= ha, b 1, v
3
+ v
2
1i
(i) Arc colorings
a
2
=
v
0
a
6
=
1
0
a
7
=
1
0
a
1
=
v
0
a
3
=
v
0
a
9
=
0
1
a
10
=
v
2
1
a
8
=
1
1
a
5
=
0
1
a
4
=
v
2
+ v 1
v
2
1
a
11
=
v
v
a
11
=
v
v
(ii) Obstruction class = 1
(iii) Cusp Shapes = v
2
+ 3v + 1
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
3
c
3
, c
4
u
3
u
2
+ 2u 1
c
5
(u 1)
3
c
7
, c
8
(u + 1)
3
c
9
u
3
u
2
+ 1
c
10
u
3
+ u
2
+ 2u + 1
c
11
u
3
+ u
2
1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y
3
c
3
, c
4
, c
10
y
3
+ 3y
2
+ 2y 1
c
5
, c
7
, c
8
(y 1)
3
c
9
, c
11
y
3
y
2
+ 2y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.877439 + 0.744862I
a = 0
b = 1.00000
4.66906 2.82812I 1.84740 + 3.54173I
v = 0.877439 0.744862I
a = 0
b = 1.00000
4.66906 + 2.82812I 1.84740 3.54173I
v = 0.754878
a = 0
b = 1.00000
0.531480 2.69480
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
3
(u
53
+ u
52
+ ··· 12u 8)
c
2
u
3
(u
53
+ 21u
52
+ ··· 112u 64)
c
3
, c
4
(u
3
u
2
+ 2u 1)(u
53
+ 2u
52
+ ··· 3u 1)
c
5
((u 1)
3
)(u
53
4u
52
+ ··· + 6u 1)
c
7
, c
8
((u + 1)
3
)(u
53
4u
52
+ ··· + 6u 1)
c
9
(u
3
u
2
+ 1)(u
53
2u
52
+ ··· 3u 1)
c
10
(u
3
+ u
2
+ 2u + 1)(u
53
+ 2u
52
+ ··· 3u 1)
c
11
(u
3
+ u
2
1)(u
53
+ 12u
52
+ ··· 1235u 131)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
3
(y
53
+ 21y
52
+ ··· 112y 64)
c
2
y
3
(y
53
+ 17y
52
+ ··· + 167168y 4096)
c
3
, c
4
, c
10
(y
3
+ 3y
2
+ 2y 1)(y
53
+ 48y
52
+ ··· + y 1)
c
5
, c
7
, c
8
((y 1)
3
)(y
53
46y
52
+ ··· + 38y 1)
c
9
(y
3
y
2
+ 2y 1)(y
53
+ 54y
51
+ ··· + y 1)
c
11
(y
3
y
2
+ 2y 1)(y
53
+ 12y
52
+ ··· 263187y 17161)
16