11a
223
(K11a
223
)
A knot diagram
1
Linearized knot diagam
6 1 10 8 9 2 11 5 3 4 7
Solving Sequence
2,6
7 1
3,9
10 5 8 4 11
c
6
c
1
c
2
c
9
c
5
c
8
c
4
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
19
+ 2u
18
+ ··· + b + 1, 5u
19
11u
18
+ ··· + 2a 10, u
20
3u
19
+ ··· 6u + 2i
I
u
2
= h−u
11
a + 10u
11
+ ··· + 2a 13, 2u
10
a + u
11
+ ··· + a
2
+ 1,
u
12
+ u
11
3u
10
4u
9
+ 3u
8
+ 6u
7
+ 2u
6
2u
5
4u
4
3u
3
+ u
2
+ 2u + 1i
I
u
3
= hb + 1, u
3
2u
2
+ 2a + 4, u
4
2u
2
+ 2i
I
v
1
= ha, b 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 49 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
19
+2u
18
+· · ·+b+1, 5u
19
11u
18
+· · ·+2a10, u
20
3u
19
+· · ·6u+2i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
9
=
5
2
u
19
+
11
2
u
18
+ ··· 11u + 5
u
19
2u
18
+ ··· + 4u 1
a
10
=
3
2
u
19
+
7
2
u
18
+ ··· 7u + 3
u
19
2u
18
+ ··· + 3u 1
a
5
=
1
2
u
19
+
3
2
u
18
+ ··· 3u + 2
u
18
u
17
+ ··· 2u + 1
a
8
=
u
6
u
4
+ 1
u
8
2u
6
+ 2u
4
a
4
=
3
2
u
19
+
7
2
u
18
+ ··· 7u + 3
u
19
+ 3u
18
+ ··· 6u + 3
a
11
=
u
3
u
5
u
3
+ u
a
11
=
u
3
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
19
12u
17
+ 6u
16
+ 32u
15
30u
14
34u
13
+ 66u
12
14u
11
58u
10
+ 78u
9
12u
8
62u
7
+ 68u
6
8u
5
32u
4
+ 38u
3
8u
2
2u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
20
3u
19
+ ··· 6u + 2
c
2
u
20
+ 11u
19
+ ··· + 4u + 4
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
20
+ u
19
+ ··· 2u 1
c
7
, c
11
u
20
9u
19
+ ··· + 110u 22
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
20
11y
19
+ ··· 4y + 4
c
2
y
20
3y
19
+ ··· 208y + 16
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
20
27y
19
+ ··· 10y + 1
c
7
, c
11
y
20
+ 17y
19
+ ··· 4004y + 484
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.544915 + 0.735723I
a = 0.396672 0.140253I
b = 1.50718 0.07179I
8.11263 + 1.41331I 12.03617 0.10296I
u = 0.544915 0.735723I
a = 0.396672 + 0.140253I
b = 1.50718 + 0.07179I
8.11263 1.41331I 12.03617 + 0.10296I
u = 0.128827 + 0.901492I
a = 0.623064 0.737924I
b = 1.60887 + 0.30371I
14.6659 + 7.5175I 13.03534 3.27786I
u = 0.128827 0.901492I
a = 0.623064 + 0.737924I
b = 1.60887 0.30371I
14.6659 7.5175I 13.03534 + 3.27786I
u = 0.773452 + 0.404695I
a = 0.591002 0.705976I
b = 0.108607 + 0.523595I
0.87704 1.78379I 2.58390 + 5.68445I
u = 0.773452 0.404695I
a = 0.591002 + 0.705976I
b = 0.108607 0.523595I
0.87704 + 1.78379I 2.58390 5.68445I
u = 0.977557 + 0.624357I
a = 0.48691 + 1.67916I
b = 1.50584 0.14245I
9.37386 6.54808I 13.7315 + 5.5285I
u = 0.977557 0.624357I
a = 0.48691 1.67916I
b = 1.50584 + 0.14245I
9.37386 + 6.54808I 13.7315 5.5285I
u = 1.21457
a = 2.22945
b = 1.62522
14.1194 17.9240
u = 1.145210 + 0.438306I
a = 0.641824 0.515615I
b = 0.535707 0.310794I
4.07199 + 2.60865I 11.03085 + 0.93775I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.145210 0.438306I
a = 0.641824 + 0.515615I
b = 0.535707 + 0.310794I
4.07199 2.60865I 11.03085 0.93775I
u = 1.160540 + 0.458172I
a = 1.261220 + 0.382851I
b = 0.503696 0.478862I
3.93117 5.51600I 10.44810 + 8.22749I
u = 1.160540 0.458172I
a = 1.261220 0.382851I
b = 0.503696 + 0.478862I
3.93117 + 5.51600I 10.44810 8.22749I
u = 0.695075
a = 0.614797
b = 0.332547
0.859562 12.8980
u = 1.280150 + 0.384189I
a = 2.09625 + 0.60113I
b = 1.65612 + 0.28210I
19.0845 3.0881I 16.9887 + 0.4542I
u = 1.280150 0.384189I
a = 2.09625 0.60113I
b = 1.65612 0.28210I
19.0845 + 3.0881I 16.9887 0.4542I
u = 0.058790 + 0.660109I
a = 0.455681 + 0.359674I
b = 0.418244 0.389912I
0.84744 + 1.30386I 6.93259 5.24353I
u = 0.058790 0.660109I
a = 0.455681 0.359674I
b = 0.418244 + 0.389912I
0.84744 1.30386I 6.93259 + 5.24353I
u = 1.236100 + 0.531142I
a = 2.07408 1.71089I
b = 1.61029 + 0.34268I
18.0142 12.6981I 15.8020 + 6.4148I
u = 1.236100 0.531142I
a = 2.07408 + 1.71089I
b = 1.61029 0.34268I
18.0142 + 12.6981I 15.8020 6.4148I
6
II. I
u
2
=
h−u
11
a+10u
11
+· · ·+2a 13, 2u
10
a+u
11
+· · ·+a
2
+1, u
12
+u
11
+· · ·+2u +1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
9
=
a
1
14
u
11
a
5
7
u
11
+ ···
1
7
a +
13
14
a
10
=
1
14
u
11
a
2
7
u
11
+ ··· +
8
7
a +
1
14
0.214286au
11
1.35714u
11
+ ··· 0.0714286a + 0.714286
a
5
=
0.285714au
11
0.357143u
11
+ ··· + 0.928571a + 1.21429
0.357143au
11
+ 0.0714286u
11
+ ··· + 0.214286a 1.14286
a
8
=
u
6
u
4
+ 1
u
8
2u
6
+ 2u
4
a
4
=
1
14
u
11
a
2
7
u
11
+ ··· +
8
7
a +
1
14
1
14
u
11
a +
2
7
u
11
+ ···
1
7
a
15
14
a
11
=
u
3
u
5
u
3
+ u
a
11
=
u
3
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
10
12u
8
4u
7
+ 16u
6
+ 8u
5
8u
3
8u
2
4u 6
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
12
+ u
11
+ ··· + 2u + 1)
2
c
2
(u
12
+ 7u
11
+ ··· + 2u + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
24
+ u
23
+ ··· 10u + 5
c
7
, c
11
(u
12
+ 3u
11
+ ··· + 2u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
12
7y
11
+ ··· 2y + 1)
2
c
2
(y
12
3y
11
+ ··· + 6y + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
24
21y
23
+ ··· 220y + 25
c
7
, c
11
(y
12
+ 13y
11
+ ··· + 6y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.961384 + 0.208970I
a = 0.506127 + 0.593369I
b = 0.915862 0.401943I
5.02961 0.71593I 15.9565 + 0.6487I
u = 0.961384 + 0.208970I
a = 2.66748 + 1.31736I
b = 1.242690 0.150848I
5.02961 0.71593I 15.9565 + 0.6487I
u = 0.961384 0.208970I
a = 0.506127 0.593369I
b = 0.915862 + 0.401943I
5.02961 + 0.71593I 15.9565 0.6487I
u = 0.961384 0.208970I
a = 2.66748 1.31736I
b = 1.242690 + 0.150848I
5.02961 + 0.71593I 15.9565 0.6487I
u = 0.958024 + 0.460561I
a = 0.002595 + 0.970301I
b = 0.317703 0.537023I
3.21312 + 4.24921I 9.82351 6.98310I
u = 0.958024 + 0.460561I
a = 1.13256 1.76796I
b = 1.233460 + 0.149435I
3.21312 + 4.24921I 9.82351 6.98310I
u = 0.958024 0.460561I
a = 0.002595 0.970301I
b = 0.317703 + 0.537023I
3.21312 4.24921I 9.82351 + 6.98310I
u = 0.958024 0.460561I
a = 1.13256 + 1.76796I
b = 1.233460 0.149435I
3.21312 4.24921I 9.82351 + 6.98310I
u = 0.049813 + 0.844037I
a = 1.205190 + 0.406247I
b = 1.51479 0.10395I
7.33005 3.01307I 11.36825 + 2.63251I
u = 0.049813 + 0.844037I
a = 0.190483 0.652317I
b = 0.619350 + 0.907491I
7.33005 3.01307I 11.36825 + 2.63251I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.049813 0.844037I
a = 1.205190 0.406247I
b = 1.51479 + 0.10395I
7.33005 + 3.01307I 11.36825 2.63251I
u = 0.049813 0.844037I
a = 0.190483 + 0.652317I
b = 0.619350 0.907491I
7.33005 + 3.01307I 11.36825 2.63251I
u = 1.238640 + 0.435356I
a = 0.178745 + 0.729514I
b = 0.704482 + 0.930610I
11.20510 1.48234I 15.1526 + 0.6754I
u = 1.238640 + 0.435356I
a = 2.56411 0.92305I
b = 1.55418 0.05622I
11.20510 1.48234I 15.1526 + 0.6754I
u = 1.238640 0.435356I
a = 0.178745 0.729514I
b = 0.704482 0.930610I
11.20510 + 1.48234I 15.1526 0.6754I
u = 1.238640 0.435356I
a = 2.56411 + 0.92305I
b = 1.55418 + 0.05622I
11.20510 + 1.48234I 15.1526 0.6754I
u = 1.228550 + 0.484706I
a = 1.41739 0.27157I
b = 0.584122 + 0.976162I
10.84800 + 7.80134I 14.3661 5.6398I
u = 1.228550 + 0.484706I
a = 2.49284 + 1.50692I
b = 1.54701 0.14731I
10.84800 + 7.80134I 14.3661 5.6398I
u = 1.228550 0.484706I
a = 1.41739 + 0.27157I
b = 0.584122 0.976162I
10.84800 7.80134I 14.3661 + 5.6398I
u = 1.228550 0.484706I
a = 2.49284 1.50692I
b = 1.54701 + 0.14731I
10.84800 7.80134I 14.3661 + 5.6398I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.463636 + 0.458719I
a = 1.49987 + 0.51998I
b = 0.312209 0.212773I
1.85256 0.35310I 5.33308 + 0.62981I
u = 0.463636 + 0.458719I
a = 0.149462 0.021454I
b = 1.137650 + 0.055627I
1.85256 0.35310I 5.33308 + 0.62981I
u = 0.463636 0.458719I
a = 1.49987 0.51998I
b = 0.312209 + 0.212773I
1.85256 + 0.35310I 5.33308 0.62981I
u = 0.463636 0.458719I
a = 0.149462 + 0.021454I
b = 1.137650 0.055627I
1.85256 + 0.35310I 5.33308 0.62981I
12
III. I
u
3
= hb + 1, u
3
2u
2
+ 2a + 4, u
4
2u
2
+ 2i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
9
=
1
2
u
3
+ u
2
2
1
a
10
=
1
2
u
3
+ u
2
2
u
3
u 1
a
5
=
1
2
u
3
+ u
2
1
1
a
8
=
1
0
a
4
=
1
2
u
3
+ u
2
2
1
a
11
=
u
3
u
3
u
a
11
=
u
3
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
20
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
4
2u
2
+ 2
c
2
(u
2
+ 2u + 2)
2
c
3
, c
8
(u 1)
4
c
4
, c
5
, c
9
c
10
(u + 1)
4
c
7
, c
11
u
4
+ 2u
2
+ 2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
2
2y + 2)
2
c
2
(y
2
+ 4)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 1)
4
c
7
, c
11
(y
2
+ 2y + 2)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.098680 + 0.455090I
a = 1.321800 + 0.223113I
b = 1.00000
5.75727 3.66386I 16.0000 + 4.0000I
u = 1.098680 0.455090I
a = 1.321800 0.223113I
b = 1.00000
5.75727 + 3.66386I 16.0000 4.0000I
u = 1.098680 + 0.455090I
a = 0.67820 1.77689I
b = 1.00000
5.75727 + 3.66386I 16.0000 4.0000I
u = 1.098680 0.455090I
a = 0.67820 + 1.77689I
b = 1.00000
5.75727 3.66386I 16.0000 + 4.0000I
16
IV. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
1
0
a
7
=
1
0
a
1
=
1
0
a
3
=
1
0
a
9
=
0
1
a
10
=
1
1
a
5
=
1
1
a
8
=
1
0
a
4
=
0
1
a
11
=
1
0
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
u
c
3
, c
8
u + 1
c
4
, c
5
, c
9
c
10
u 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
y
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u(u
4
2u
2
+ 2)(u
12
+ u
11
+ ··· + 2u + 1)
2
(u
20
3u
19
+ ··· 6u + 2)
c
2
u(u
2
+ 2u + 2)
2
(u
12
+ 7u
11
+ ··· + 2u + 1)
2
· (u
20
+ 11u
19
+ ··· + 4u + 4)
c
3
, c
8
((u 1)
4
)(u + 1)(u
20
+ u
19
+ ··· 2u 1)(u
24
+ u
23
+ ··· 10u + 5)
c
4
, c
5
, c
9
c
10
(u 1)(u + 1)
4
(u
20
+ u
19
+ ··· 2u 1)(u
24
+ u
23
+ ··· 10u + 5)
c
7
, c
11
u(u
4
+ 2u
2
+ 2)(u
12
+ 3u
11
+ ··· + 2u + 1)
2
· (u
20
9u
19
+ ··· + 110u 22)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y(y
2
2y + 2)
2
(y
12
7y
11
+ ··· 2y + 1)
2
· (y
20
11y
19
+ ··· 4y + 4)
c
2
y(y
2
+ 4)
2
(y
12
3y
11
+ ··· + 6y + 1)
2
(y
20
3y
19
+ ··· 208y + 16)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
((y 1)
5
)(y
20
27y
19
+ ··· 10y + 1)(y
24
21y
23
+ ··· 220y + 25)
c
7
, c
11
y(y
2
+ 2y + 2)
2
(y
12
+ 13y
11
+ ··· + 6y + 1)
2
· (y
20
+ 17y
19
+ ··· 4004y + 484)
22