11a
227
(K11a
227
)
A knot diagram
1
Linearized knot diagam
6 1 10 7 9 2 11 5 3 8 4
Solving Sequence
2,7
6 1
3,9
10 5 4 8 11
c
6
c
1
c
2
c
9
c
5
c
4
c
8
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h11u
29
82u
28
+ ··· + 4b 92, 527u
29
5269u
28
+ ··· + 32a + 9872, u
30
11u
29
+ ··· + 192u 32i
I
u
2
= h11652760173a
9
u
5
+ 89806445727a
8
u
5
+ ··· + 133817291376a + 47860828523,
2a
8
u
5
21a
7
u
5
+ ··· 94a 49, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
3
= hu
18
2u
17
+ ··· + b 5, 5u
18
+ u
17
+ ··· + a + 5, u
19
6u
17
+ ··· 3u 1i
* 3 irreducible components of dim
C
= 0, with total 109 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h11u
29
82u
28
+ · · · + 4b 92, 527u
29
5269u
28
+ · · · + 32a +
9872, u
30
11u
29
+ · · · + 192u 32i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
9
=
527
32
u
29
+
5269
32
u
28
+ ··· + 1810u
617
2
11
4
u
29
+
41
2
u
28
+ ···
141
2
u + 23
a
10
=
817
32
u
29
8075
32
u
28
+ ··· 3086u +
1095
2
11
4
u
29
51
4
u
28
+ ··· +
2501
2
u 297
a
5
=
293
32
u
29
2921
32
u
28
+ ··· 1146u + 208
45
16
u
29
+
529
16
u
28
+ ··· + 840u 167
a
4
=
203
32
u
29
1863
32
u
28
+ ··· 306u + 41
45
16
u
29
+
529
16
u
28
+ ··· + 840u 167
a
8
=
34.7500u
29
+ 340.063u
28
+ ··· + 3656.25u 618.500
41
16
u
29
545
16
u
28
+ ···
2761
2
u + 306
a
11
=
161
32
u
29
+
1303
32
u
28
+ ···
405
2
u + 74
43
4
u
29
877
8
u
28
+ ··· 1606u + 307
a
11
=
161
32
u
29
+
1303
32
u
28
+ ···
405
2
u + 74
43
4
u
29
877
8
u
28
+ ··· 1606u + 307
(ii) Obstruction class = 1
(iii) Cusp Shapes =
125
4
u
29
1153
4
u
28
+ ··· 1098u + 74
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
30
11u
29
+ ··· + 192u 32
c
2
u
30
+ 15u
29
+ ··· + 6656u + 1024
c
3
, c
5
, c
8
c
9
u
30
+ u
29
+ ··· 4u 1
c
4
, c
11
u
30
u
29
+ ··· + 5u 1
c
7
, c
10
u
30
15u
29
+ ··· 608u + 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
30
15y
29
+ ··· 6656y + 1024
c
2
y
30
+ y
29
+ ··· 26607616y + 1048576
c
3
, c
5
, c
8
c
9
y
30
19y
29
+ ··· 10y + 1
c
4
, c
11
y
30
+ 15y
29
+ ··· 63y + 1
c
7
, c
10
y
30
+ 11y
29
+ ··· 54272y + 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.354016 + 0.952222I
a = 0.347030 0.166142I
b = 1.70462 + 0.71163I
0.73838 + 11.58090I 10.77845 6.50285I
u = 0.354016 0.952222I
a = 0.347030 + 0.166142I
b = 1.70462 0.71163I
0.73838 11.58090I 10.77845 + 6.50285I
u = 0.665243 + 0.706437I
a = 0.249680 + 0.357056I
b = 0.033448 0.582987I
5.27507 + 0.27236I 4.38143 + 1.72345I
u = 0.665243 0.706437I
a = 0.249680 0.357056I
b = 0.033448 + 0.582987I
5.27507 0.27236I 4.38143 1.72345I
u = 0.831465 + 0.619805I
a = 0.566561 0.242853I
b = 0.287346 + 0.129330I
1.77898 2.42113I 7.07335 + 4.38585I
u = 0.831465 0.619805I
a = 0.566561 + 0.242853I
b = 0.287346 0.129330I
1.77898 + 2.42113I 7.07335 4.38585I
u = 0.296677 + 1.000260I
a = 0.420856 + 0.176492I
b = 1.67360 0.55405I
3.57253 + 5.28515I 13.21757 4.63262I
u = 0.296677 1.000260I
a = 0.420856 0.176492I
b = 1.67360 + 0.55405I
3.57253 5.28515I 13.21757 + 4.63262I
u = 0.926080 + 0.166520I
a = 0.558199 + 0.794477I
b = 0.298536 0.006553I
0.275678 + 0.763775I 12.33614 0.51179I
u = 0.926080 0.166520I
a = 0.558199 0.794477I
b = 0.298536 + 0.006553I
0.275678 0.763775I 12.33614 + 0.51179I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.958919 + 0.665702I
a = 0.749615 0.365794I
b = 0.094148 + 0.346299I
4.42305 5.51991I 5.37311 + 3.55740I
u = 0.958919 0.665702I
a = 0.749615 + 0.365794I
b = 0.094148 0.346299I
4.42305 + 5.51991I 5.37311 3.55740I
u = 0.782901 + 0.947325I
a = 0.338805 + 0.292526I
b = 0.616787 + 0.323590I
2.03512 6.57158I 13.1399 + 7.7803I
u = 0.782901 0.947325I
a = 0.338805 0.292526I
b = 0.616787 0.323590I
2.03512 + 6.57158I 13.1399 7.7803I
u = 0.216760 + 0.735038I
a = 0.370196 0.451660I
b = 1.010310 + 0.550932I
3.33461 + 1.71029I 5.29492 2.96109I
u = 0.216760 0.735038I
a = 0.370196 + 0.451660I
b = 1.010310 0.550932I
3.33461 1.71029I 5.29492 + 2.96109I
u = 1.212150 + 0.509515I
a = 1.70079 0.64122I
b = 1.95783 0.73496I
0.34945 6.45290I 8.62006 + 7.93871I
u = 1.212150 0.509515I
a = 1.70079 + 0.64122I
b = 1.95783 + 0.73496I
0.34945 + 6.45290I 8.62006 7.93871I
u = 0.972756 + 0.901108I
a = 0.334189 0.562127I
b = 0.131042 0.573173I
1.48873 0.08947I 14.6678 + 0.I
u = 0.972756 0.901108I
a = 0.334189 + 0.562127I
b = 0.131042 + 0.573173I
1.48873 + 0.08947I 14.6678 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.184760 + 0.635088I
a = 1.83194 1.06102I
b = 1.99907 1.02698I
3.2788 17.3495I 11.0000 + 9.7060I
u = 1.184760 0.635088I
a = 1.83194 + 1.06102I
b = 1.99907 + 1.02698I
3.2788 + 17.3495I 11.0000 9.7060I
u = 1.338150 + 0.148812I
a = 1.75034 + 0.56831I
b = 1.97215 + 0.06859I
6.69442 8.00845I 16.1183 + 5.5286I
u = 1.338150 0.148812I
a = 1.75034 0.56831I
b = 1.97215 0.06859I
6.69442 + 8.00845I 16.1183 5.5286I
u = 1.214540 + 0.631477I
a = 1.67829 + 0.96407I
b = 1.97706 + 0.99448I
6.38290 11.14710I 15.9321 + 7.3132I
u = 1.214540 0.631477I
a = 1.67829 0.96407I
b = 1.97706 0.99448I
6.38290 + 11.14710I 15.9321 7.3132I
u = 1.44337 + 0.22944I
a = 1.50223 0.37543I
b = 2.10384 0.46294I
9.50227 0.94273I 0
u = 1.44337 0.22944I
a = 1.50223 + 0.37543I
b = 2.10384 + 0.46294I
9.50227 + 0.94273I 0
u = 1.48034
a = 1.77242
b = 3.14754
7.09333 26.3310
u = 0.445504
a = 0.918337
b = 0.177465
0.640430 15.6030
7
II. I
u
2
= h1.17 × 10
10
a
9
u
5
+ 8.98 × 10
10
a
8
u
5
+ · · · + 1.34 × 10
11
a + 4.79 ×
10
10
, 2a
8
u
5
21a
7
u
5
+ · · · 94a 49, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
9
=
a
0.325577a
9
u
5
2.50919a
8
u
5
+ ··· 3.73885a 1.33723
a
10
=
0.183994a
9
u
5
+ 0.994553a
8
u
5
+ ··· + 3.90401a 0.592599
0.283072a
9
u
5
1.62802a
8
u
5
+ ··· 1.40193a 0.200904
a
5
=
1.30690a
9
u
5
+ 3.61273a
8
u
5
+ ··· + 1.47966a + 1.63608
0.967742a
2
u
5
+ 0.516129u
5
+ ··· 0.193548a
2
1.09677
a
4
=
1.30690a
9
u
5
+ 3.61273a
8
u
5
+ ··· + 1.47966a + 0.539304
0.967742a
2
u
5
+ 0.516129u
5
+ ··· 0.193548a
2
1.09677
a
8
=
0.808536a
9
u
5
4.31140a
8
u
5
+ ··· 4.22465a 1.09622
0.634657a
9
u
5
+ 1.79927a
8
u
5
+ ··· 0.0967500a 1.31464
a
11
=
3.02127a
9
u
5
+ 3.28997a
8
u
5
+ ··· 4.33881a 0.208666
0.752285a
9
u
5
+ 3.15457a
8
u
5
+ ··· + 1.08110a 0.182340
a
11
=
3.02127a
9
u
5
+ 3.28997a
8
u
5
+ ··· 4.33881a 0.208666
0.752285a
9
u
5
+ 3.15457a
8
u
5
+ ··· + 1.08110a 0.182340
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
131385956428
35791056355
a
9
u
5
+
490666283248
35791056355
a
8
u
5
+ ··· +
186855165268
35791056355
a
517357523682
35791056355
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
6
+ u
5
u
4
2u
3
+ u + 1)
10
c
2
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
10
c
3
, c
5
, c
8
c
9
u
60
+ u
59
+ ··· 5088u + 1363
c
4
, c
11
u
60
5u
59
+ ··· + 122u + 29
c
7
, c
10
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
12
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
10
c
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
10
c
3
, c
5
, c
8
c
9
y
60
45y
59
+ ··· 62677840y + 1857769
c
4
, c
11
y
60
9y
59
+ ··· + 41260y + 841
c
7
, c
10
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
12
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.742657 + 0.425564I
b = 0.916583 + 0.350276I
0.95285 + 3.47653I 14.9724 2.7044I
u = 1.002190 + 0.295542I
a = 0.45011 1.45671I
b = 1.49335 + 1.18033I
0.95285 5.32514I 14.9724 + 4.2928I
u = 1.002190 + 0.295542I
a = 0.113184 + 0.298531I
b = 0.870721 0.821809I
4.42433 0.92430I 18.2356 + 0.7942I
u = 1.002190 + 0.295542I
a = 1.53453 1.13377I
b = 0.374716 0.392769I
6.49631 + 0.60627I 19.2016 3.6364I
u = 1.002190 + 0.295542I
a = 2.27869 + 0.35511I
b = 0.53719 1.73478I
6.49631 2.45488I 19.2016 + 5.2249I
u = 1.002190 + 0.295542I
a = 2.27319 0.79694I
b = 1.58582 + 0.12211I
0.95285 5.32514I 14.9724 + 4.2928I
u = 1.002190 + 0.295542I
a = 2.24008 + 1.19866I
b = 0.924059 + 0.316575I
6.49631 2.45488I 19.2016 + 5.2249I
u = 1.002190 + 0.295542I
a = 2.46157 + 1.23803I
b = 1.87918 + 0.12872I
4.42433 0.92430I 18.2356 + 0.7942I
u = 1.002190 + 0.295542I
a = 2.88369 + 0.36211I
b = 1.38756 + 1.45819I
6.49631 + 0.60627I 19.2016 3.6364I
u = 1.002190 + 0.295542I
a = 2.53373 1.75241I
b = 2.41207 0.03768I
0.95285 + 3.47653I 14.9724 2.7044I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 0.295542I
a = 0.742657 0.425564I
b = 0.916583 0.350276I
0.95285 3.47653I 14.9724 + 2.7044I
u = 1.002190 0.295542I
a = 0.45011 + 1.45671I
b = 1.49335 1.18033I
0.95285 + 5.32514I 14.9724 4.2928I
u = 1.002190 0.295542I
a = 0.113184 0.298531I
b = 0.870721 + 0.821809I
4.42433 + 0.92430I 18.2356 0.7942I
u = 1.002190 0.295542I
a = 1.53453 + 1.13377I
b = 0.374716 + 0.392769I
6.49631 0.60627I 19.2016 + 3.6364I
u = 1.002190 0.295542I
a = 2.27869 0.35511I
b = 0.53719 + 1.73478I
6.49631 + 2.45488I 19.2016 5.2249I
u = 1.002190 0.295542I
a = 2.27319 + 0.79694I
b = 1.58582 0.12211I
0.95285 + 5.32514I 14.9724 4.2928I
u = 1.002190 0.295542I
a = 2.24008 1.19866I
b = 0.924059 0.316575I
6.49631 + 2.45488I 19.2016 5.2249I
u = 1.002190 0.295542I
a = 2.46157 1.23803I
b = 1.87918 0.12872I
4.42433 + 0.92430I 18.2356 0.7942I
u = 1.002190 0.295542I
a = 2.88369 0.36211I
b = 1.38756 1.45819I
6.49631 0.60627I 19.2016 + 3.6364I
u = 1.002190 0.295542I
a = 2.53373 + 1.75241I
b = 2.41207 + 0.03768I
0.95285 3.47653I 14.9724 + 2.7044I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.428243 + 0.664531I
a = 0.721370 0.709097I
b = 0.674020 + 0.107233I
2.82837 + 3.47653I 7.53897 2.70436I
u = 0.428243 + 0.664531I
a = 0.981105 + 0.272479I
b = 1.54329 1.02403I
2.82837 5.32514I 7.53897 + 4.29281I
u = 0.428243 + 0.664531I
a = 0.898402 + 0.565581I
b = 0.1217720 + 0.0097093I
0.643115 0.924305I 10.80214 + 0.79423I
u = 0.428243 + 0.664531I
a = 0.541113 + 0.738356I
b = 1.191620 + 0.571450I
2.71510 + 0.60627I 11.76817 3.63642I
u = 0.428243 + 0.664531I
a = 1.087110 0.251939I
b = 0.732629 1.185040I
2.82837 + 3.47653I 7.53897 2.70436I
u = 0.428243 + 0.664531I
a = 1.033070 0.643013I
b = 0.123020 + 0.420914I
2.82837 5.32514I 7.53897 + 4.29281I
u = 0.428243 + 0.664531I
a = 0.758222 + 0.096285I
b = 0.941735 0.247759I
2.71510 2.45488I 11.76817 + 5.22487I
u = 0.428243 + 0.664531I
a = 0.742084 + 0.005860I
b = 1.196980 + 0.711653I
0.643115 0.924305I 10.80214 + 0.79423I
u = 0.428243 + 0.664531I
a = 0.082662 0.691670I
b = 1.60311 0.16418I
2.71510 2.45488I 11.76817 + 5.22487I
u = 0.428243 + 0.664531I
a = 0.381661 + 0.147894I
b = 1.201490 + 0.207665I
2.71510 + 0.60627I 11.76817 3.63642I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.428243 0.664531I
a = 0.721370 + 0.709097I
b = 0.674020 0.107233I
2.82837 3.47653I 7.53897 + 2.70436I
u = 0.428243 0.664531I
a = 0.981105 0.272479I
b = 1.54329 + 1.02403I
2.82837 + 5.32514I 7.53897 4.29281I
u = 0.428243 0.664531I
a = 0.898402 0.565581I
b = 0.1217720 0.0097093I
0.643115 + 0.924305I 10.80214 0.79423I
u = 0.428243 0.664531I
a = 0.541113 0.738356I
b = 1.191620 0.571450I
2.71510 0.60627I 11.76817 + 3.63642I
u = 0.428243 0.664531I
a = 1.087110 + 0.251939I
b = 0.732629 + 1.185040I
2.82837 3.47653I 7.53897 + 2.70436I
u = 0.428243 0.664531I
a = 1.033070 + 0.643013I
b = 0.123020 0.420914I
2.82837 + 5.32514I 7.53897 4.29281I
u = 0.428243 0.664531I
a = 0.758222 0.096285I
b = 0.941735 + 0.247759I
2.71510 + 2.45488I 11.76817 5.22487I
u = 0.428243 0.664531I
a = 0.742084 0.005860I
b = 1.196980 0.711653I
0.643115 + 0.924305I 10.80214 0.79423I
u = 0.428243 0.664531I
a = 0.082662 + 0.691670I
b = 1.60311 + 0.16418I
2.71510 + 2.45488I 11.76817 5.22487I
u = 0.428243 0.664531I
a = 0.381661 0.147894I
b = 1.201490 0.207665I
2.71510 0.60627I 11.76817 + 3.63642I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.073950 + 0.558752I
a = 0.838779 + 0.524858I
b = 0.199489 + 0.020974I
0.93776 + 10.09390I 11.2557 9.0092I
u = 1.073950 + 0.558752I
a = 0.270775 + 0.632958I
b = 0.291023 + 0.542759I
0.93776 + 1.29219I 11.25569 2.01198I
u = 1.073950 + 0.558752I
a = 0.407608 0.076665I
b = 0.295194 0.406019I
2.53372 + 5.69302I 14.5189 5.5106I
u = 1.073950 + 0.558752I
a = 1.69666 + 0.51052I
b = 1.09009 + 1.41396I
0.93776 + 1.29219I 11.25569 2.01198I
u = 1.073950 + 0.558752I
a = 1.54997 + 0.93925I
b = 1.183430 + 0.080798I
4.60570 + 7.22360I 15.4849 9.9412I
u = 1.073950 + 0.558752I
a = 0.70760 + 1.71878I
b = 1.72104 0.78280I
4.60570 + 4.16244I 15.4849 1.0799I
u = 1.073950 + 0.558752I
a = 1.63758 1.34966I
b = 1.42021 0.22640I
4.60570 + 4.16244I 15.4849 1.0799I
u = 1.073950 + 0.558752I
a = 1.90882 1.13668I
b = 1.70635 1.05544I
2.53372 + 5.69302I 14.5189 5.5106I
u = 1.073950 + 0.558752I
a = 1.38410 1.92597I
b = 2.20254 + 0.18452I
4.60570 + 7.22360I 15.4849 9.9412I
u = 1.073950 + 0.558752I
a = 2.36946 + 1.15899I
b = 2.10666 + 1.42779I
0.93776 + 10.09390I 11.2557 9.0092I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.073950 0.558752I
a = 0.838779 0.524858I
b = 0.199489 0.020974I
0.93776 10.09390I 11.2557 + 9.0092I
u = 1.073950 0.558752I
a = 0.270775 0.632958I
b = 0.291023 0.542759I
0.93776 1.29219I 11.25569 + 2.01198I
u = 1.073950 0.558752I
a = 0.407608 + 0.076665I
b = 0.295194 + 0.406019I
2.53372 5.69302I 14.5189 + 5.5106I
u = 1.073950 0.558752I
a = 1.69666 0.51052I
b = 1.09009 1.41396I
0.93776 1.29219I 11.25569 + 2.01198I
u = 1.073950 0.558752I
a = 1.54997 0.93925I
b = 1.183430 0.080798I
4.60570 7.22360I 15.4849 + 9.9412I
u = 1.073950 0.558752I
a = 0.70760 1.71878I
b = 1.72104 + 0.78280I
4.60570 4.16244I 15.4849 + 1.0799I
u = 1.073950 0.558752I
a = 1.63758 + 1.34966I
b = 1.42021 + 0.22640I
4.60570 4.16244I 15.4849 + 1.0799I
u = 1.073950 0.558752I
a = 1.90882 + 1.13668I
b = 1.70635 + 1.05544I
2.53372 5.69302I 14.5189 + 5.5106I
u = 1.073950 0.558752I
a = 1.38410 + 1.92597I
b = 2.20254 0.18452I
4.60570 7.22360I 15.4849 + 9.9412I
u = 1.073950 0.558752I
a = 2.36946 1.15899I
b = 2.10666 1.42779I
0.93776 10.09390I 11.2557 + 9.0092I
16
III.
I
u
3
= hu
18
2u
17
+· · ·+b5, 5u
18
+u
17
+· · ·+a+5, u
19
6u
17
+· · ·3u1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
9
=
5u
18
u
17
+ ··· + 4u 5
u
18
+ 2u
17
+ ··· + 7u + 5
a
10
=
6u
18
34u
16
+ ··· + 6u 4
u
18
+ u
17
+ ··· + 6u + 4
a
5
=
u
16
+ u
15
+ ··· 7u + 2
u
18
+ 6u
16
+ ··· u 1
a
4
=
u
18
+ 7u
16
+ ··· 8u + 1
u
18
+ 6u
16
+ ··· u 1
a
8
=
2u
18
u
17
+ ··· 13u 5
u
18
u
17
+ ··· 2u + 1
a
11
=
4u
18
+ 3u
17
+ ··· + 17u + 1
2u
18
10u
16
+ ··· + u + 1
a
11
=
4u
18
+ 3u
17
+ ··· + 17u + 1
2u
18
10u
16
+ ··· + u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
18
8u
17
41u
16
+ 52u
15
+ 109u
14
159u
13
185u
12
+ 301u
11
+ 222u
10
378u
9
214u
8
+ 340u
7
+ 185u
6
221u
5
136u
4
+ 106u
3
+ 68u
2
25u 27
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
6u
17
+ ··· 3u + 1
c
2
u
19
+ 12u
18
+ ··· + 15u + 1
c
3
, c
8
u
19
u
18
+ ··· 7u
2
+ 1
c
4
, c
11
u
19
u
18
+ ··· 5u 1
c
5
, c
9
u
19
+ u
18
+ ··· + 7u
2
1
c
6
u
19
6u
17
+ ··· 3u 1
c
7
u
19
4u
18
+ ··· 2u + 1
c
10
u
19
+ 4u
18
+ ··· 2u 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
19
12y
18
+ ··· + 15y 1
c
2
y
19
16y
17
+ ··· + 39y 1
c
3
, c
5
, c
8
c
9
y
19
19y
18
+ ··· + 14y 1
c
4
, c
11
y
19
y
18
+ ··· + 19y 1
c
7
, c
10
y
19
+ 8y
18
+ ··· 14y 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.967261 + 0.354798I
a = 2.25280 + 0.77715I
b = 0.723993 + 1.182090I
5.96459 0.14794I 11.82997 + 4.86845I
u = 0.967261 0.354798I
a = 2.25280 0.77715I
b = 0.723993 1.182090I
5.96459 + 0.14794I 11.82997 4.86845I
u = 0.859964 + 0.270094I
a = 2.44861 0.38201I
b = 0.214129 0.865610I
5.42770 2.49496I 9.36645 + 5.70226I
u = 0.859964 0.270094I
a = 2.44861 + 0.38201I
b = 0.214129 + 0.865610I
5.42770 + 2.49496I 9.36645 5.70226I
u = 0.799111 + 0.756170I
a = 0.712718 0.194814I
b = 0.667283 + 0.538318I
2.87601 5.72258I 9.05355 + 4.91542I
u = 0.799111 0.756170I
a = 0.712718 + 0.194814I
b = 0.667283 0.538318I
2.87601 + 5.72258I 9.05355 4.91542I
u = 0.524497 + 0.661152I
a = 0.533158 0.064524I
b = 1.086980 0.067202I
2.75709 1.00041I 12.04366 + 0.13880I
u = 0.524497 0.661152I
a = 0.533158 + 0.064524I
b = 1.086980 + 0.067202I
2.75709 + 1.00041I 12.04366 0.13880I
u = 1.093670 + 0.388336I
a = 1.87002 + 1.21245I
b = 2.20612 0.26942I
0.93178 + 6.58854I 14.8946 10.5687I
u = 1.093670 0.388336I
a = 1.87002 1.21245I
b = 2.20612 + 0.26942I
0.93178 6.58854I 14.8946 + 10.5687I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.041770 + 0.569580I
a = 1.20132 1.51146I
b = 1.42965 + 0.24889I
4.29805 + 5.80588I 12.82283 4.90465I
u = 1.041770 0.569580I
a = 1.20132 + 1.51146I
b = 1.42965 0.24889I
4.29805 5.80588I 12.82283 + 4.90465I
u = 0.701288 + 0.304921I
a = 1.73597 + 0.54576I
b = 1.47018 0.11319I
0.58710 3.61548I 7.77111 + 2.87703I
u = 0.701288 0.304921I
a = 1.73597 0.54576I
b = 1.47018 + 0.11319I
0.58710 + 3.61548I 7.77111 2.87703I
u = 0.959396 + 0.782749I
a = 0.576822 0.442112I
b = 0.293446 0.948439I
2.39322 0.08960I 4.76406 0.93292I
u = 0.959396 0.782749I
a = 0.576822 + 0.442112I
b = 0.293446 + 0.948439I
2.39322 + 0.08960I 4.76406 + 0.93292I
u = 1.39483
a = 1.58672
b = 1.86590
9.09201 15.7390
u = 1.45435
a = 1.89251
b = 3.24994
7.18999 56.9650
u = 0.389498
a = 2.38361
b = 1.10524
2.73039 14.2040
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
6
+ u
5
u
4
2u
3
+ u + 1)
10
)(u
19
6u
17
+ ··· 3u + 1)
· (u
30
11u
29
+ ··· + 192u 32)
c
2
((u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
10
)(u
19
+ 12u
18
+ ··· + 15u + 1)
· (u
30
+ 15u
29
+ ··· + 6656u + 1024)
c
3
, c
8
(u
19
u
18
+ ··· 7u
2
+ 1)(u
30
+ u
29
+ ··· 4u 1)
· (u
60
+ u
59
+ ··· 5088u + 1363)
c
4
, c
11
(u
19
u
18
+ ··· 5u 1)(u
30
u
29
+ ··· + 5u 1)
· (u
60
5u
59
+ ··· + 122u + 29)
c
5
, c
9
(u
19
+ u
18
+ ··· + 7u
2
1)(u
30
+ u
29
+ ··· 4u 1)
· (u
60
+ u
59
+ ··· 5088u + 1363)
c
6
((u
6
+ u
5
u
4
2u
3
+ u + 1)
10
)(u
19
6u
17
+ ··· 3u 1)
· (u
30
11u
29
+ ··· + 192u 32)
c
7
((u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
12
)(u
19
4u
18
+ ··· 2u + 1)
· (u
30
15u
29
+ ··· 608u + 64)
c
10
((u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
12
)(u
19
+ 4u
18
+ ··· 2u 1)
· (u
30
15u
29
+ ··· 608u + 64)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
((y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
10
)(y
19
12y
18
+ ··· + 15y 1)
· (y
30
15y
29
+ ··· 6656y + 1024)
c
2
((y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
10
)(y
19
16y
17
+ ··· + 39y 1)
· (y
30
+ y
29
+ ··· 26607616y + 1048576)
c
3
, c
5
, c
8
c
9
(y
19
19y
18
+ ··· + 14y 1)(y
30
19y
29
+ ··· 10y + 1)
· (y
60
45y
59
+ ··· 62677840y + 1857769)
c
4
, c
11
(y
19
y
18
+ ··· + 19y 1)(y
30
+ 15y
29
+ ··· 63y + 1)
· (y
60
9y
59
+ ··· + 41260y + 841)
c
7
, c
10
((y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
12
)(y
19
+ 8y
18
+ ··· 14y 1)
· (y
30
+ 11y
29
+ ··· 54272y + 4096)
23