11a
230
(K11a
230
)
A knot diagram
1
Linearized knot diagam
6 1 10 9 8 2 11 5 4 3 7
Solving Sequence
2,7
6 1 3 11 8 5 10 4 9
c
6
c
1
c
2
c
11
c
7
c
5
c
10
c
3
c
9
c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
25
+ u
24
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 25 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
25
+ u
24
+ · · · u 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
11
=
u
3
u
3
+ u
a
8
=
u
6
u
4
+ 1
u
6
+ 2u
4
u
2
a
5
=
u
14
+ 3u
12
4u
10
+ u
8
+ 2u
6
2u
4
+ 1
u
14
4u
12
+ 7u
10
6u
8
+ 2u
6
u
2
a
10
=
u
11
2u
9
+ 2u
7
+ u
3
u
13
+ 3u
11
5u
9
+ 4u
7
2u
5
u
3
+ u
a
4
=
u
19
+ 4u
17
8u
15
+ 8u
13
5u
11
+ 2u
9
2u
7
u
3
u
21
5u
19
+ 13u
17
20u
15
+ 20u
13
11u
11
+ u
9
+ 4u
7
u
5
u
3
+ u
a
9
=
u
22
5u
20
+ 12u
18
15u
16
+ 8u
14
+ 4u
12
8u
10
+ 3u
8
+ 3u
6
3u
4
+ 1
u
22
+ 6u
20
+ ··· + 2u
4
u
2
a
9
=
u
22
5u
20
+ 12u
18
15u
16
+ 8u
14
+ 4u
12
8u
10
+ 3u
8
+ 3u
6
3u
4
+ 1
u
22
+ 6u
20
+ ··· + 2u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
23
+ 24u
21
+ 4u
20
72u
19
20u
18
+ 124u
17
+ 48u
16
128u
15
60u
14
+ 64u
13
+
36u
12
16u
9
4u
8
8u
7
8u
6
+ 16u
5
+ 12u
4
16u
3
4u
2
4u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
25
u
24
+ ··· u + 1
c
2
u
25
+ 13u
24
+ ··· + u + 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
25
u
24
+ ··· + u + 1
c
7
, c
11
u
25
3u
24
+ ··· 7u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
25
13y
24
+ ··· + y 1
c
2
y
25
y
24
+ ··· + 13y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
25
+ 35y
24
+ ··· + y 1
c
7
, c
11
y
25
+ 15y
24
+ ··· + 241y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.779045 + 0.639863I
17.3947 + 2.4684I 0.82696 3.09489I
u = 0.779045 0.639863I
17.3947 2.4684I 0.82696 + 3.09489I
u = 0.763751 + 0.563111I
6.42429 2.24483I 0.87739 + 3.73001I
u = 0.763751 0.563111I
6.42429 + 2.24483I 0.87739 3.73001I
u = 0.245615 + 0.802005I
14.6751 4.2594I 0.24448 + 2.05504I
u = 0.245615 0.802005I
14.6751 + 4.2594I 0.24448 2.05504I
u = 0.738513 + 0.360257I
0.77592 + 1.63253I 1.50081 6.32590I
u = 0.738513 0.360257I
0.77592 1.63253I 1.50081 + 6.32590I
u = 1.143530 + 0.340046I
0.133925 + 0.085472I 5.86002 + 0.34875I
u = 1.143530 0.340046I
0.133925 0.085472I 5.86002 0.34875I
u = 1.140980 + 0.421501I
3.95366 2.40561I 10.55936 + 0.02824I
u = 1.140980 0.421501I
3.95366 + 2.40561I 10.55936 0.02824I
u = 1.189550 + 0.291950I
10.21240 + 0.84057I 5.43221 + 0.40339I
u = 1.189550 0.291950I
10.21240 0.84057I 5.43221 0.40339I
u = 0.212747 + 0.739529I
4.10003 + 3.28234I 0.69331 3.26169I
u = 0.212747 0.739529I
4.10003 3.28234I 0.69331 + 3.26169I
u = 1.147100 + 0.473379I
3.57874 + 5.59583I 8.74632 7.67577I
u = 1.147100 0.473379I
3.57874 5.59583I 8.74632 + 7.67577I
u = 1.153710 + 0.519862I
1.36392 8.01588I 4.14152 + 6.75012I
u = 1.153710 0.519862I
1.36392 + 8.01588I 4.14152 6.75012I
u = 1.164700 + 0.548434I
11.9587 + 9.2744I 3.33794 5.54787I
u = 1.164700 0.548434I
11.9587 9.2744I 3.33794 + 5.54787I
u = 0.712530
0.882258 12.9060
u = 0.098501 + 0.642338I
0.67035 1.33734I 5.73536 + 4.96479I
u = 0.098501 0.642338I
0.67035 + 1.33734I 5.73536 4.96479I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
25
u
24
+ ··· u + 1
c
2
u
25
+ 13u
24
+ ··· + u + 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
25
u
24
+ ··· + u + 1
c
7
, c
11
u
25
3u
24
+ ··· 7u + 8
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
25
13y
24
+ ··· + y 1
c
2
y
25
y
24
+ ··· + 13y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
25
+ 35y
24
+ ··· + y 1
c
7
, c
11
y
25
+ 15y
24
+ ··· + 241y 64
7