9
12
(K9a
22
)
A knot diagram
1
Linearized knot diagam
5 8 7 2 9 4 3 1 6
Solving Sequence
5,9
6 1 2 4 7 3 8
c
5
c
9
c
1
c
4
c
6
c
3
c
8
c
2
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
17
+ u
16
4u
15
5u
14
+ 7u
13
+ 11u
12
4u
11
12u
10
3u
9
+ 5u
8
+ 6u
7
+ 2u
6
2u
5
2u
4
+ u + 1i
* 1 irreducible components of dim
C
= 0, with total 17 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
17
+ u
16
4u
15
5u
14
+ 7u
13
+ 11u
12
4u
11
12u
10
3u
9
+
5u
8
+ 6u
7
+ 2u
6
2u
5
2u
4
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
2
=
u
3
u
3
+ u
a
4
=
u
6
u
4
+ 1
u
6
2u
4
+ u
2
a
7
=
u
14
+ 3u
12
4u
10
+ u
8
+ 2u
6
2u
4
+ 1
u
14
+ 4u
12
7u
10
+ 6u
8
2u
6
+ u
2
a
3
=
u
11
+ 2u
9
2u
7
u
3
u
13
+ 3u
11
5u
9
+ 4u
7
2u
5
u
3
+ u
a
8
=
u
3
u
5
u
3
+ u
a
8
=
u
3
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
16
+20u
14
+4u
13
44u
12
16u
11
+44u
10
+28u
9
8u
8
20u
7
24u
6
+16u
4
+8u
3
10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
17
+ 3u
16
+ ··· + 9u + 3
c
2
, c
3
, c
6
c
7
u
17
u
16
+ ··· + u + 1
c
5
, c
9
u
17
+ u
16
+ ··· + u + 1
c
8
u
17
+ 9u
16
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
17
+ 11y
16
+ ··· + 57y 9
c
2
, c
3
, c
6
c
7
y
17
+ 19y
16
+ ··· + y 1
c
5
, c
9
y
17
9y
16
+ ··· + y 1
c
8
y
17
y
16
+ ··· + 9y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.774885 + 0.615952I
8.77101 + 2.39923I 0.86600 3.27109I
u = 0.774885 0.615952I
8.77101 2.39923I 0.86600 + 3.27109I
u = 0.758174 + 0.422247I
1.12328 1.83062I 0.40697 + 5.22267I
u = 0.758174 0.422247I
1.12328 + 1.83062I 0.40697 5.22267I
u = 0.231761 + 0.782357I
6.15100 3.91820I 0.40216 + 2.39256I
u = 0.231761 0.782357I
6.15100 + 3.91820I 0.40216 2.39256I
u = 1.172060 + 0.309872I
1.86779 + 0.50801I 5.57451 + 0.23246I
u = 1.172060 0.309872I
1.86779 0.50801I 5.57451 0.23246I
u = 1.151920 + 0.412149I
4.14236 + 2.05778I 9.01930 0.37816I
u = 1.151920 0.412149I
4.14236 2.05778I 9.01930 + 0.37816I
u = 0.756727
1.00476 10.8690
u = 1.156820 + 0.481476I
3.64564 6.09306I 7.29297 + 6.87425I
u = 1.156820 0.481476I
3.64564 + 6.09306I 7.29297 6.87425I
u = 1.162590 + 0.537552I
3.41234 + 8.83664I 3.62632 5.87120I
u = 1.162590 0.537552I
3.41234 8.83664I 3.62632 + 5.87120I
u = 0.112463 + 0.679715I
0.69802 + 1.70542I 4.10923 4.02096I
u = 0.112463 0.679715I
0.69802 1.70542I 4.10923 + 4.02096I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
u
17
+ 3u
16
+ ··· + 9u + 3
c
2
, c
3
, c
6
c
7
u
17
u
16
+ ··· + u + 1
c
5
, c
9
u
17
+ u
16
+ ··· + u + 1
c
8
u
17
+ 9u
16
+ ··· + u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
17
+ 11y
16
+ ··· + 57y 9
c
2
, c
3
, c
6
c
7
y
17
+ 19y
16
+ ··· + y 1
c
5
, c
9
y
17
9y
16
+ ··· + y 1
c
8
y
17
y
16
+ ··· + 9y 1
7