11a
231
(K11a
231
)
A knot diagram
1
Linearized knot diagam
7 1 6 10 3 4 2 11 5 8 9
Solving Sequence
4,10 2,5,7
8 1 6 3 9 11
c
4
c
7
c
1
c
6
c
3
c
9
c
11
c
2
, c
5
, c
8
, c
10
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= h49503754u
16
103286795u
15
+ ··· + 3447876362d 235456666,
58457271u
16
270451180u
15
+ ··· + 13791505448c 14346071104,
31318034u
16
423514703u
15
+ ··· + 6895752724b 2520805844,
630201461u
16
1197766854u
15
+ ··· + 13791505448a 18642484192, u
17
2u
16
+ ··· 4u
2
+ 8i
I
u
2
= h4u
6
a + 14u
5
a 3u
6
+ 26u
4
a 3u
5
+ 26u
3
a 2u
4
+ 8u
2
a + 3u
3
12au + 9u
2
+ 10d 14a + 9u + 8,
3u
6
a + 3u
5
a u
6
+ 2u
4
a + 4u
5
3u
3
a + 11u
4
9u
2
a + 21u
3
9au + 18u
2
+ 10c 8a + 8u + 1,
u
5
2u
4
3u
3
+ au 2u
2
+ b u,
4u
6
2u
4
a 9u
5
4u
3
a 15u
4
6u
2
a 10u
3
+ 2a
2
4au 3u
2
2a + 7u + 7,
u
7
+ 3u
6
+ 6u
5
+ 7u
4
+ 5u
3
+ u
2
2u 2i
I
u
3
= hu
3
+ d + u, c + u, u
4
2u
2
a u
3
+ au + u
2
+ b 2a 1,
u
4
a + 2u
3
a 3u
2
a + u
3
+ a
2
+ 2au u
2
a + 2u 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
I
u
4
= h−6u
4
a + u
3
a + 2u
4
15u
2
a 8u
3
+ 5au + 5u
2
+ 23d + 2a 17u + 7,
2u
4
a 15u
3
a 7u
4
5u
2
a + 5u
3
6au 6u
2
+ 23c 7a 21u + 10,
4u
4
a + 16u
3
a + 9u
4
10u
2
a 13u
3
+ 11au + 11u
2
+ 23b 14a + 4u 3,
u
4
a + 2u
4
u
2
a + u
3
+ a
2
2au + u
2
a + 4u + 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
I
u
5
= hu
3
+ d + u, c + u, u
4
+ u
3
u
2
+ b 1, u
4
u
2
+ a 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
I
v
1
= ha, d + 1, c + a, b 1, v + 1i
I
v
2
= ha, d, c 1, b + 1, v 1i
I
v
3
= ha, d + 1, c + a 1, b 1, v 1i
I
v
4
= hc, d + 1, cb + a 1, cv + av c v, bv v + 1i
* 8 irreducible components of dim
C
= 0, with total 59 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h4.95 × 10
7
u
16
1.03 × 10
8
u
15
+ · · · + 3.45 × 10
9
d 2.35 ×
10
8
, 5.85 × 10
7
u
16
2.70 × 10
8
u
15
+ · · · + 1.38 × 10
10
c 1.43 × 10
10
, 3.13 ×
10
7
u
16
4.24 × 10
8
u
15
+ · · · + 6.90 × 10
9
b 2.52 × 10
9
, 6.30 × 10
8
u
16
1.20 × 10
9
u
15
+ · · · + 1.38 × 10
10
a 1.86 × 10
10
, u
17
2u
16
+ · · · 4u
2
+ 8i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
0.0456949u
16
+ 0.0868482u
15
+ ··· + 0.0108537u + 1.35174
0.00454164u
16
+ 0.0614167u
15
+ ··· + 1.35174u + 0.365559
a
5
=
1
u
2
a
7
=
0.00423864u
16
+ 0.0196100u
15
+ ··· 0.366884u + 1.04021
0.0143578u
16
+ 0.0299566u
15
+ ··· 0.201558u + 0.0682903
a
8
=
0.00853629u
16
0.00271483u
15
+ ··· 0.843158u + 0.201558
0.0111327u
16
+ 0.00527464u
15
+ ··· 1.04021u 0.0339091
a
1
=
0.0196690u
16
0.00798947u
15
+ ··· + 0.197053u + 0.235467
0.00442501u
16
+ 0.0219877u
15
+ ··· + 0.882859u 0.216879
a
6
=
0.0101191u
16
0.0103467u
15
+ ··· 0.165326u + 0.971920
0.0143578u
16
+ 0.0299566u
15
+ ··· 0.201558u + 0.0682903
a
3
=
0.0101191u
16
0.0103467u
15
+ ··· 0.165326u + 0.971920
0.0191724u
16
0.0450506u
15
+ ··· + 0.120605u 0.147423
a
9
=
u
u
3
+ u
a
11
=
0.0184279u
16
0.0176833u
15
+ ··· + 0.128762u + 0.120605
0.00318587u
16
0.0118199u
15
+ ··· + 0.824498u 0.234332
a
11
=
0.0184279u
16
0.0176833u
15
+ ··· + 0.128762u + 0.120605
0.00318587u
16
0.0118199u
15
+ ··· + 0.824498u 0.234332
(ii) Obstruction class = 1
(iii) Cusp Shapes =
975451789
3447876362
u
16
210120269
3447876362
u
15
+ ··· +
8037027246
1723938181
u
2146878348
1723938181
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
17
2u
16
+ ··· 8u + 4
c
2
u
17
+ 6u
16
+ ··· + 88u + 16
c
3
, c
5
, c
6
c
8
, c
10
, c
11
u
17
+ 2u
16
+ ··· + 3u + 1
c
4
, c
9
u
17
2u
16
+ ··· 4u
2
+ 8
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
17
6y
16
+ ··· + 88y 16
c
2
y
17
+ 10y
16
+ ··· + 288y 256
c
3
, c
5
, c
6
c
8
, c
10
, c
11
y
17
20y
16
+ ··· + 27y 1
c
4
, c
9
y
17
+ 6y
16
+ ··· + 64y 64
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.679716 + 0.561358I
a = 0.75464 + 1.62593I
b = 0.39979 + 1.52879I
c = 0.849883 + 1.063640I
d = 0.073472 + 0.578699I
3.14388 + 1.09865I 5.52136 1.09882I
u = 0.679716 0.561358I
a = 0.75464 1.62593I
b = 0.39979 1.52879I
c = 0.849883 1.063640I
d = 0.073472 0.578699I
3.14388 1.09865I 5.52136 + 1.09882I
u = 0.555749 + 1.023030I
a = 1.22318 0.96405I
b = 0.30647 1.78712I
c = 0.306715 + 1.153640I
d = 0.260592 + 0.795594I
1.71782 5.90288I 0.75718 + 7.23695I
u = 0.555749 1.023030I
a = 1.22318 + 0.96405I
b = 0.30647 + 1.78712I
c = 0.306715 1.153640I
d = 0.260592 0.795594I
1.71782 + 5.90288I 0.75718 7.23695I
u = 1.247530 + 0.318357I
a = 0.254428 + 0.248211I
b = 0.238386 0.390648I
c = 1.033850 + 0.177824I
d = 1.44180 + 0.15237I
8.60033 1.91429I 8.38805 + 0.33236I
u = 1.247530 0.318357I
a = 0.254428 0.248211I
b = 0.238386 + 0.390648I
c = 1.033850 0.177824I
d = 1.44180 0.15237I
8.60033 + 1.91429I 8.38805 0.33236I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.022849 + 0.695780I
a = 0.596447 0.521515I
b = 0.349231 + 0.426912I
c = 0.070481 0.342332I
d = 0.556553 0.244029I
0.88275 + 1.29794I 5.86581 6.22804I
u = 0.022849 0.695780I
a = 0.596447 + 0.521515I
b = 0.349231 0.426912I
c = 0.070481 + 0.342332I
d = 0.556553 + 0.244029I
0.88275 1.29794I 5.86581 + 6.22804I
u = 1.235140 + 0.560024I
a = 1.37636 0.88777I
b = 1.20283 1.86731I
c = 1.030900 0.315398I
d = 1.43635 0.27040I
6.85439 + 7.49245I 6.04980 5.00652I
u = 1.235140 0.560024I
a = 1.37636 + 0.88777I
b = 1.20283 + 1.86731I
c = 1.030900 + 0.315398I
d = 1.43635 + 0.27040I
6.85439 7.49245I 6.04980 + 5.00652I
u = 0.66454 + 1.33308I
a = 0.189517 0.255094I
b = 0.466001 0.083122I
c = 0.052946 + 1.267480I
d = 1.48587 + 0.32095I
11.9481 + 8.6770I 9.06927 4.38269I
u = 0.66454 1.33308I
a = 0.189517 + 0.255094I
b = 0.466001 + 0.083122I
c = 0.052946 1.267480I
d = 1.48587 0.32095I
11.9481 8.6770I 9.06927 + 4.38269I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.79652 + 1.26851I
a = 0.52130 + 1.70360I
b = 1.74580 + 2.01822I
c = 0.18365 1.46954I
d = 1.45618 0.38779I
9.1924 14.7354I 6.16899 + 8.15927I
u = 0.79652 1.26851I
a = 0.52130 1.70360I
b = 1.74580 2.01822I
c = 0.18365 + 1.46954I
d = 1.45618 + 0.38779I
9.1924 + 14.7354I 6.16899 8.15927I
u = 0.11728 + 1.54547I
a = 0.380984 + 0.529958I
b = 0.774348 0.650953I
c = 0.113527 + 0.217154I
d = 1.58385 + 0.05558I
15.7365 + 3.2760I 10.07807 2.58290I
u = 0.11728 1.54547I
a = 0.380984 0.529958I
b = 0.774348 + 0.650953I
c = 0.113527 0.217154I
d = 1.58385 0.05558I
15.7365 3.2760I 10.07807 + 2.58290I
u = 0.429856
a = 1.10419
b = 0.474641
c = 1.42921
d = 0.191836
1.29941 8.68290
8
II. I
u
2
= h4u
6
a 3u
6
+ · · · 14a + 8, 3u
6
a u
6
+ · · · 8a + 1, u
5
2u
4
+
· · · + b u, 4u
6
9u
5
+ · · · 2a + 7, u
7
+ 3u
6
+ · · · 2u 2i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
a
u
5
+ 2u
4
+ 3u
3
au + 2u
2
+ u
a
5
=
1
u
2
a
7
=
3
10
u
6
a +
1
10
u
6
+ ··· +
4
5
a
1
10
2
5
u
6
a +
3
10
u
6
+ ··· +
7
5
a
4
5
a
8
=
7
10
u
6
a +
1
10
u
6
+ ···
1
5
a
1
10
3
5
u
6
a +
3
10
u
6
+ ···
3
5
a
4
5
a
1
=
1
10
u
6
a
1
5
u
6
+ ··· +
2
5
a +
7
10
1
5
u
6
a
1
10
u
6
+ ··· +
1
5
a +
3
5
a
6
=
1
10
u
6
a
1
5
u
6
+ ···
3
5
a +
7
10
2
5
u
6
a +
3
10
u
6
+ ··· +
7
5
a
4
5
a
3
=
1
10
u
6
a
1
5
u
6
+ ···
3
5
a +
7
10
1
5
u
6
a
1
10
u
6
+ ··· +
1
5
a +
3
5
a
9
=
u
u
3
+ u
a
11
=
1
10
u
6
a +
1
5
u
6
+ ···
2
5
a
7
10
1
5
u
6
a
1
10
u
6
+ ··· +
1
5
a
2
5
a
11
=
1
10
u
6
a +
1
5
u
6
+ ···
2
5
a
7
10
1
5
u
6
a
1
10
u
6
+ ··· +
1
5
a
2
5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
6
+ 8u
5
+ 10u
4
+ 10u
3
4u
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
7
u
6
u
5
+ 2u
4
+ u
3
2u
2
+ u + 1)
2
c
2
(u
7
+ 3u
6
+ 7u
5
+ 8u
4
+ 9u
3
+ 6u
2
+ 5u + 1)
2
c
3
, c
5
, c
6
c
8
, c
10
, c
11
u
14
+ u
13
+ ··· 4u 4
c
4
, c
9
(u
7
+ 3u
6
+ 6u
5
+ 7u
4
+ 5u
3
+ u
2
2u 2)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
7
3y
6
+ 7y
5
8y
4
+ 9y
3
6y
2
+ 5y 1)
2
c
2
(y
7
+ 5y
6
+ 19y
5
+ 36y
4
+ 49y
3
+ 38y
2
+ 13y 1)
2
c
3
, c
5
, c
6
c
8
, c
10
, c
11
y
14
11y
13
+ ··· 40y + 16
c
4
, c
9
(y
7
+ 3y
6
+ 4y
5
+ y
4
y
3
+ 7y
2
+ 8y 4)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.984140 + 0.426152I
a = 0.84548 + 1.17216I
b = 0.51690 + 2.36796I
c = 0.883662 + 0.240859I
d = 1.312740 + 0.203166I
1.19445 3.93070I 1.74059 + 4.87230I
u = 0.984140 + 0.426152I
a = 1.31968 1.83467I
b = 0.33256 1.51387I
c = 1.03098 1.45195I
d = 0.327402 0.709633I
1.19445 3.93070I 1.74059 + 4.87230I
u = 0.984140 0.426152I
a = 0.84548 1.17216I
b = 0.51690 2.36796I
c = 0.883662 0.240859I
d = 1.312740 0.203166I
1.19445 + 3.93070I 1.74059 4.87230I
u = 0.984140 0.426152I
a = 1.31968 + 1.83467I
b = 0.33256 + 1.51387I
c = 1.03098 + 1.45195I
d = 0.327402 + 0.709633I
1.19445 + 3.93070I 1.74059 4.87230I
u = 0.167785 + 1.218780I
a = 0.774541 0.827762I
b = 0.139458 + 0.651897I
c = 0.828730 + 0.501700I
d = 1.42814 + 0.08000I
7.14223 0.95540I 8.68929 + 2.37083I
u = 0.167785 + 1.218780I
a = 0.509470 0.184562I
b = 1.138810 0.805107I
c = 0.353234 + 0.874846I
d = 0.830837 + 0.693845I
7.14223 0.95540I 8.68929 + 2.37083I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.167785 1.218780I
a = 0.774541 + 0.827762I
b = 0.139458 0.651897I
c = 0.828730 0.501700I
d = 1.42814 0.08000I
7.14223 + 0.95540I 8.68929 2.37083I
u = 0.167785 1.218780I
a = 0.509470 + 0.184562I
b = 1.138810 + 0.805107I
c = 0.353234 0.874846I
d = 0.830837 0.693845I
7.14223 + 0.95540I 8.68929 2.37083I
u = 0.654547 + 1.202470I
a = 1.13788 1.10109I
b = 1.38518 2.03898I
c = 0.09289 + 1.46019I
d = 1.42086 + 0.31765I
3.65356 + 9.93065I 3.53972 7.33664I
u = 0.654547 + 1.202470I
a = 0.82436 + 1.60067I
b = 0.57924 + 2.08898I
c = 0.223021 1.320930I
d = 0.281398 0.947821I
3.65356 + 9.93065I 3.53972 7.33664I
u = 0.654547 1.202470I
a = 1.13788 + 1.10109I
b = 1.38518 + 2.03898I
c = 0.09289 1.46019I
d = 1.42086 0.31765I
3.65356 9.93065I 3.53972 + 7.33664I
u = 0.654547 1.202470I
a = 0.82436 1.60067I
b = 0.57924 2.08898I
c = 0.223021 + 1.320930I
d = 0.281398 + 0.947821I
3.65356 9.93065I 3.53972 + 7.33664I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.612945
a = 0.738956
b = 1.97108
c = 0.686858
d = 1.15162
2.33847 2.06080
u = 0.612945
a = 3.21576
b = 0.452939
c = 3.49590
d = 0.648769
2.33847 2.06080
14
III. I
u
3
= hu
3
+ d + u, c + u, u
4
u
3
+ · · · 2a 1, u
4
a + 2u
3
a + · · · a
1, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
a
u
4
+ 2u
2
a + u
3
au u
2
+ 2a + 1
a
5
=
1
u
2
a
7
=
u
u
3
u
a
8
=
u
4
u
2
a u
3
+ au + u
2
a 1
u
4
a + u
3
a 2u
2
a + au u
2
2a + u 1
a
1
=
u
4
a u
3
a + u
4
+ u
2
a u
3
+ 2u
2
+ a u
2u
2
a + 2a + 1
a
6
=
u
3
u
3
u
a
3
=
u
3
u
4
u
3
+ u
2
+ 1
a
9
=
u
u
3
+ u
a
11
=
a
u
4
+ 2u
2
a + u
3
au u
2
+ 2a + 1
a
11
=
a
u
4
+ 2u
2
a + u
3
au u
2
+ 2a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u
2
4u + 6
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
8
c
10
, c
11
u
10
u
9
2u
8
+ 4u
7
4u
5
+ 3u
4
+ u
3
2u
2
+ 1
c
2
u
10
+ 5u
9
+ ··· + 4u + 1
c
3
, c
5
, c
6
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
4
, c
9
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
8
c
10
, c
11
y
10
5y
9
+ ··· 4y + 1
c
2
y
10
y
9
6y
7
+ 22y
6
+ 6y
5
+ 45y
4
+ 15y
3
+ 22y
2
+ 4y + 1
c
3
, c
5
, c
6
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
4
, c
9
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 1.058210 0.418624I
b = 0.107804 + 1.200570I
c = 0.339110 0.822375I
d = 0.309916 0.549911I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.339110 + 0.822375I
a = 0.24156 1.72831I
b = 1.43677 1.97522I
c = 0.339110 0.822375I
d = 0.309916 0.549911I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.339110 0.822375I
a = 1.058210 + 0.418624I
b = 0.107804 1.200570I
c = 0.339110 + 0.822375I
d = 0.309916 + 0.549911I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.339110 0.822375I
a = 0.24156 + 1.72831I
b = 1.43677 + 1.97522I
c = 0.339110 + 0.822375I
d = 0.309916 + 0.549911I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.766826
a = 0.337181 + 0.531835I
b = 1.32946 + 1.28131I
c = 0.766826
d = 1.21774
2.40108 3.48110
u = 0.766826
a = 0.337181 0.531835I
b = 1.32946 1.28131I
c = 0.766826
d = 1.21774
2.40108 3.48110
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.455697 + 1.200150I
a = 1.128480 0.089327I
b = 0.91615 + 1.81852I
c = 0.455697 1.200150I
d = 1.41878 0.21917I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.455697 + 1.200150I
a = 0.665888 + 0.235737I
b = 0.415657 0.252788I
c = 0.455697 1.200150I
d = 1.41878 0.21917I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.455697 1.200150I
a = 1.128480 + 0.089327I
b = 0.91615 1.81852I
c = 0.455697 + 1.200150I
d = 1.41878 + 0.21917I
5.87256 + 4.40083I 6.74431 3.49859I
u = 0.455697 1.200150I
a = 0.665888 0.235737I
b = 0.415657 + 0.252788I
c = 0.455697 + 1.200150I
d = 1.41878 + 0.21917I
5.87256 + 4.40083I 6.74431 3.49859I
19
IV. I
u
4
= h−6u
4
a + 2u
4
+ · · · + 2a + 7, 2u
4
a 7u
4
+ · · · 7a + 10, 4u
4
a +
9u
4
+ · · · 14a 3, u
4
a + 2u
4
+ · · · a + 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
a
0.173913au
4
0.391304u
4
+ ··· + 0.608696a + 0.130435
a
5
=
1
u
2
a
7
=
0.0869565au
4
+ 0.304348u
4
+ ··· + 0.304348a 0.434783
0.260870au
4
0.0869565u
4
+ ··· 0.0869565a 0.304348
a
8
=
u
2
+ 1
u
2
a
1
=
1
0
a
6
=
0.173913au
4
+ 0.391304u
4
+ ··· + 0.391304a 0.130435
0.260870au
4
0.0869565u
4
+ ··· 0.0869565a 0.304348
a
3
=
0.173913au
4
+ 0.391304u
4
+ ··· + 0.391304a 0.130435
0.173913au
4
0.391304u
4
+ ··· + 0.608696a + 0.130435
a
9
=
u
u
3
+ u
a
11
=
u
4
+ u
2
+ 1
u
4
u
3
+ u
2
+ 1
a
11
=
u
4
+ u
2
+ 1
u
4
u
3
+ u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u
2
4u + 6
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
7
u
10
u
9
2u
8
+ 4u
7
4u
5
+ 3u
4
+ u
3
2u
2
+ 1
c
2
u
10
+ 5u
9
+ ··· + 4u + 1
c
4
, c
9
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
8
, c
10
, c
11
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
7
y
10
5y
9
+ ··· 4y + 1
c
2
y
10
y
9
6y
7
+ 22y
6
+ 6y
5
+ 45y
4
+ 15y
3
+ 22y
2
+ 4y + 1
c
4
, c
9
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
8
, c
10
, c
11
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 1.201520 0.626542I
b = 0.703115 0.728284I
c = 0.427719 + 0.494930I
d = 0.926127 + 0.393188I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.339110 + 0.822375I
a = 1.43707 + 2.33968I
b = 1.50324 + 0.38743I
c = 1.70427 + 2.10897I
d = 1.236040 + 0.156723I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.339110 0.822375I
a = 1.201520 + 0.626542I
b = 0.703115 + 0.728284I
c = 0.427719 0.494930I
d = 0.926127 0.393188I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.339110 0.822375I
a = 1.43707 2.33968I
b = 1.50324 0.38743I
c = 1.70427 2.10897I
d = 1.236040 0.156723I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.766826
a = 1.73372 + 1.67092I
b = 0.258559 + 0.407825I
c = 2.08403 + 1.59800I
d = 0.608868 + 0.334904I
2.40108 3.48110
u = 0.766826
a = 1.73372 1.67092I
b = 0.258559 0.407825I
c = 2.08403 1.59800I
d = 0.608868 0.334904I
2.40108 3.48110
23
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.455697 + 1.200150I
a = 1.07098 + 1.17002I
b = 0.62145 + 1.31364I
c = 0.568964 0.788513I
d = 1.018500 0.644891I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.455697 + 1.200150I
a = 0.069156 0.372595I
b = 0.586363 0.691742I
c = 0.116920 + 1.183200I
d = 0.400287 + 0.864056I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.455697 1.200150I
a = 1.07098 1.17002I
b = 0.62145 1.31364I
c = 0.568964 + 0.788513I
d = 1.018500 + 0.644891I
5.87256 + 4.40083I 6.74431 3.49859I
u = 0.455697 1.200150I
a = 0.069156 + 0.372595I
b = 0.586363 + 0.691742I
c = 0.116920 1.183200I
d = 0.400287 0.864056I
5.87256 + 4.40083I 6.74431 3.49859I
24
V. I
u
5
=
hu
3
+d+u, c+u, u
4
+u
3
u
2
+b1, u
4
u
2
+a1, u
5
u
4
+2u
3
u
2
+u1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
u
4
+ u
2
+ 1
u
4
u
3
+ u
2
+ 1
a
5
=
1
u
2
a
7
=
u
u
3
u
a
8
=
u
2
+ 1
u
2
a
1
=
1
0
a
6
=
u
3
u
3
u
a
3
=
u
3
u
4
u
3
+ u
2
+ 1
a
9
=
u
u
3
+ u
a
11
=
u
4
+ u
2
+ 1
u
4
u
3
+ u
2
+ 1
a
11
=
u
4
+ u
2
+ 1
u
4
u
3
+ u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u
2
4u + 6
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
7
, c
8
c
10
, c
11
u
5
+ u
4
2u
3
u
2
+ u 1
c
2
u
5
+ 5u
4
+ 8u
3
+ 3u
2
u + 1
c
4
, c
9
u
5
u
4
+ 2u
3
u
2
+ u 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
7
, c
8
c
10
, c
11
y
5
5y
4
+ 8y
3
3y
2
y 1
c
2
y
5
9y
4
+ 32y
3
35y
2
5y 1
c
4
, c
9
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.442672 + 0.068387I
b = 0.206354 + 0.340852I
c = 0.339110 0.822375I
d = 0.309916 0.549911I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.339110 0.822375I
a = 0.442672 0.068387I
b = 0.206354 0.340852I
c = 0.339110 + 0.822375I
d = 0.309916 + 0.549911I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.766826
a = 1.93379
b = 1.48288
c = 0.766826
d = 1.21774
2.40108 3.48110
u = 0.455697 + 1.200150I
a = 0.09043 1.60288I
b = 1.96491 0.62190I
c = 0.455697 1.200150I
d = 1.41878 0.21917I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.455697 1.200150I
a = 0.09043 + 1.60288I
b = 1.96491 + 0.62190I
c = 0.455697 + 1.200150I
d = 1.41878 + 0.21917I
5.87256 + 4.40083I 6.74431 3.49859I
28
VI. I
v
1
= ha, d + 1, c + a, b 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
1
0
a
2
=
0
1
a
5
=
1
0
a
7
=
0
1
a
8
=
0
1
a
1
=
0
1
a
6
=
1
1
a
3
=
0
1
a
9
=
1
0
a
11
=
1
1
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
9
u
c
3
, c
8
u + 1
c
5
, c
6
, c
10
c
11
u 1
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
9
y
c
3
, c
5
, c
6
c
8
, c
10
, c
11
y 1
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 0
d = 1.00000
3.28987 12.0000
32
VII. I
v
2
= ha, d, c 1, b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
1
0
a
2
=
0
1
a
5
=
1
0
a
7
=
1
0
a
8
=
1
1
a
1
=
1
1
a
6
=
1
0
a
3
=
1
0
a
9
=
1
0
a
11
=
0
1
a
11
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
, c
11
u 1
c
2
, c
7
, c
8
u + 1
c
3
, c
4
, c
5
c
6
, c
9
u
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
, c
10
, c
11
y 1
c
3
, c
4
, c
5
c
6
, c
9
y
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 0
0 0
36
VIII. I
v
3
= ha, d + 1, c + a 1, b 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
1
0
a
2
=
0
1
a
5
=
1
0
a
7
=
1
1
a
8
=
1
0
a
1
=
1
0
a
6
=
2
1
a
3
=
1
1
a
9
=
1
0
a
11
=
1
0
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
u + 1
c
4
, c
8
, c
9
c
10
, c
11
u
c
5
, c
6
, c
7
u 1
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
y 1
c
4
, c
8
, c
9
c
10
, c
11
y
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 1.00000
0 0
40
IX. I
v
4
= hc, d + 1, cb + a 1, cv + av c v, bv v + 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
v
0
a
2
=
1
b
a
5
=
1
0
a
7
=
0
1
a
8
=
1
b 1
a
1
=
1
b 1
a
6
=
1
1
a
3
=
0
1
a
9
=
v
0
a
11
=
v + 1
b 1
a
11
=
v + 1
b 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = b
2
+ v
2
2b + 5
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
41
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
1.64493 3.74053 + 0.27852I
42
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u(u 1)(u + 1)(u
5
+ u
4
2u
3
u
2
+ u 1)
· (u
7
u
6
u
5
+ 2u
4
+ u
3
2u
2
+ u + 1)
2
· (u
10
u
9
2u
8
+ 4u
7
4u
5
+ 3u
4
+ u
3
2u
2
+ 1)
2
· (u
17
2u
16
+ ··· 8u + 4)
c
2
u(u + 1)
2
(u
5
+ 5u
4
+ 8u
3
+ 3u
2
u + 1)
· (u
7
+ 3u
6
+ 7u
5
+ 8u
4
+ 9u
3
+ 6u
2
+ 5u + 1)
2
· ((u
10
+ 5u
9
+ ··· + 4u + 1)
2
)(u
17
+ 6u
16
+ ··· + 88u + 16)
c
3
, c
8
u(u + 1)
2
(u
5
+ u
4
2u
3
u
2
+ u 1)
3
· (u
10
u
9
2u
8
+ 4u
7
4u
5
+ 3u
4
+ u
3
2u
2
+ 1)
· (u
14
+ u
13
+ ··· 4u 4)(u
17
+ 2u
16
+ ··· + 3u + 1)
c
4
, c
9
u
3
(u
5
u
4
+ 2u
3
u
2
+ u 1)
5
· ((u
7
+ 3u
6
+ ··· 2u 2)
2
)(u
17
2u
16
+ ··· 4u
2
+ 8)
c
5
, c
6
, c
10
c
11
u(u 1)
2
(u
5
+ u
4
2u
3
u
2
+ u 1)
3
· (u
10
u
9
2u
8
+ 4u
7
4u
5
+ 3u
4
+ u
3
2u
2
+ 1)
· (u
14
+ u
13
+ ··· 4u 4)(u
17
+ 2u
16
+ ··· + 3u + 1)
43
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y(y 1)
2
(y
5
5y
4
+ 8y
3
3y
2
y 1)
· (y
7
3y
6
+ 7y
5
8y
4
+ 9y
3
6y
2
+ 5y 1)
2
· ((y
10
5y
9
+ ··· 4y + 1)
2
)(y
17
6y
16
+ ··· + 88y 16)
c
2
y(y 1)
2
(y
5
9y
4
+ 32y
3
35y
2
5y 1)
· (y
7
+ 5y
6
+ 19y
5
+ 36y
4
+ 49y
3
+ 38y
2
+ 13y 1)
2
· (y
10
y
9
6y
7
+ 22y
6
+ 6y
5
+ 45y
4
+ 15y
3
+ 22y
2
+ 4y + 1)
2
· (y
17
+ 10y
16
+ ··· + 288y 256)
c
3
, c
5
, c
6
c
8
, c
10
, c
11
y(y 1)
2
(y
5
5y
4
+ ··· y 1)
3
(y
10
5y
9
+ ··· 4y + 1)
· (y
14
11y
13
+ ··· 40y + 16)(y
17
20y
16
+ ··· + 27y 1)
c
4
, c
9
y
3
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
5
· (y
7
+ 3y
6
+ 4y
5
+ y
4
y
3
+ 7y
2
+ 8y 4)
2
· (y
17
+ 6y
16
+ ··· + 64y 64)
44