11a
234
(K11a
234
)
A knot diagram
1
Linearized knot diagam
7 1 9 10 11 8 2 3 4 5 6
Solving Sequence
4,10
5 11 6 1 9 3 2 8 7
c
4
c
10
c
5
c
11
c
9
c
3
c
2
c
8
c
6
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
18
u
17
+ ··· + 3u + 1i
* 1 irreducible components of dim
C
= 0, with total 18 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
18
u
17
13u
16
+ 12u
15
+ 68u
14
57u
13
183u
12
+ 136u
11
+
269u
10
169u
9
213u
8
+ 98u
7
+ 88u
6
14u
5
20u
4
6u
3
u
2
+ 3u + 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
3
2u
u
5
3u
3
+ u
a
9
=
u
u
a
3
=
u
2
+ 1
u
2
a
2
=
u
10
7u
8
+ 16u
6
13u
4
+ u
2
+ 1
u
12
8u
10
+ 22u
8
24u
6
+ 9u
4
2u
2
a
8
=
u
3
+ 2u
u
3
+ u
a
7
=
u
10
7u
8
+ 16u
6
13u
4
+ u
2
+ 1
u
10
6u
8
+ 11u
6
8u
4
+ 3u
2
a
7
=
u
10
7u
8
+ 16u
6
13u
4
+ u
2
+ 1
u
10
6u
8
+ 11u
6
8u
4
+ 3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
14
+ 44u
12
184u
10
+ 364u
8
+ 4u
7
344u
6
24u
5
+ 136u
4
+ 40u
3
16u
2
16u 22
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
18
+ u
17
+ ··· + 3u + 1
c
2
, c
6
u
18
+ 7u
17
+ ··· + 11u + 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
c
11
u
18
u
17
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
18
7y
17
+ ··· 11y + 1
c
2
, c
6
y
18
+ 9y
17
+ ··· 47y + 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
c
11
y
18
27y
17
+ ··· 11y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.802264
4.07451 21.8940
u = 0.682462 + 0.319779I
0.72908 4.95076I 15.7381 + 7.5517I
u = 0.682462 0.319779I
0.72908 + 4.95076I 15.7381 7.5517I
u = 1.293990 + 0.094892I
5.94680 1.32320I 15.7100 + 0.4777I
u = 1.293990 0.094892I
5.94680 + 1.32320I 15.7100 0.4777I
u = 1.345790 + 0.141741I
7.44415 + 6.58593I 17.8634 5.4114I
u = 1.345790 0.141741I
7.44415 6.58593I 17.8634 + 5.4114I
u = 0.540515 + 0.292466I
0.102284 + 0.099203I 13.71777 2.29447I
u = 0.540515 0.292466I
0.102284 0.099203I 13.71777 + 2.29447I
u = 1.39228
11.4338 21.8520
u = 0.061930 + 0.448593I
1.53103 + 2.40291I 8.85929 4.25520I
u = 0.061930 0.448593I
1.53103 2.40291I 8.85929 + 4.25520I
u = 0.325737
0.531842 18.6180
u = 1.81666 + 0.02246I
17.5190 + 1.8647I 15.9411 0.0828I
u = 1.81666 0.02246I
17.5190 1.8647I 15.9411 + 0.0828I
u = 1.82734 + 0.03524I
19.2732 7.4400I 18.1912 + 4.5032I
u = 1.82734 0.03524I
19.2732 + 7.4400I 18.1912 4.5032I
u = 1.83796
15.9019 21.5940
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
18
+ u
17
+ ··· + 3u + 1
c
2
, c
6
u
18
+ 7u
17
+ ··· + 11u + 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
c
11
u
18
u
17
+ ··· + 3u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
18
7y
17
+ ··· 11y + 1
c
2
, c
6
y
18
+ 9y
17
+ ··· 47y + 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
c
11
y
18
27y
17
+ ··· 11y + 1
7