11a
238
(K11a
238
)
A knot diagram
1
Linearized knot diagam
7 1 11 10 9 8 2 3 5 4 6
Solving Sequence
2,7
8 1 3 9 6 5 11 4 10
c
7
c
1
c
2
c
8
c
6
c
5
c
11
c
3
c
10
c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
32
u
31
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 32 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
32
u
31
+ · · · + 2u 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
1
=
u
u
a
3
=
u
3
u
3
+ u
a
9
=
u
8
+ u
6
u
4
+ 1
u
8
+ 2u
6
2u
4
+ 2u
2
a
6
=
u
2
+ 1
u
4
a
5
=
u
20
+ 3u
18
7u
16
+ 10u
14
10u
12
+ 7u
10
u
8
2u
6
+ 3u
4
3u
2
+ 1
u
20
+ 4u
18
10u
16
+ 18u
14
23u
12
+ 24u
10
18u
8
+ 10u
6
5u
4
a
11
=
u
7
+ 2u
5
2u
3
+ 2u
u
9
+ u
7
u
5
+ u
a
4
=
u
19
+ 4u
17
10u
15
+ 18u
13
23u
11
+ 24u
9
18u
7
+ 10u
5
5u
3
u
21
+ 3u
19
7u
17
+ 10u
15
10u
13
+ 7u
11
u
9
2u
7
+ 3u
5
3u
3
+ u
a
10
=
u
31
+ 6u
29
+ ··· 2u
3
+ 2u
u
31
+ u
30
+ ··· + 2u 1
a
10
=
u
31
+ 6u
29
+ ··· 2u
3
+ 2u
u
31
+ u
30
+ ··· + 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
31
+ 24u
29
4u
28
88u
27
+ 20u
26
+ 228u
25
72u
24
456u
23
+ 180u
22
+ 736u
21
356u
20
976u
19
+ 568u
18
+ 1080u
17
740u
16
996u
15
+ 812u
14
+ 760u
13
736u
12
468u
11
+ 564u
10
+ 220u
9
356u
8
68u
7
+ 176u
6
+ 8u
5
76u
4
+ 4u
3
+ 20u
2
4u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
32
+ u
31
+ ··· 2u 1
c
2
, c
6
u
32
+ 11u
31
+ ··· + 8u + 1
c
3
, c
4
, c
5
c
9
, c
10
u
32
u
31
+ ··· 2u 1
c
8
, c
11
u
32
u
31
+ ··· + 8u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
32
11y
31
+ ··· 8y + 1
c
2
, c
6
y
32
+ 21y
31
+ ··· 8y + 1
c
3
, c
4
, c
5
c
9
, c
10
y
32
+ 41y
31
+ ··· 8y + 1
c
8
, c
11
y
32
15y
31
+ ··· 280y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.645707 + 0.769221I
3.20190 3.54493I 5.40363 + 3.59501I
u = 0.645707 0.769221I
3.20190 + 3.54493I 5.40363 3.59501I
u = 0.766364 + 0.598235I
1.37609 + 2.05463I 7.69647 5.64619I
u = 0.766364 0.598235I
1.37609 2.05463I 7.69647 + 5.64619I
u = 0.650134 + 0.810724I
12.44820 + 5.14177I 4.17146 2.01638I
u = 0.650134 0.810724I
12.44820 5.14177I 4.17146 + 2.01638I
u = 1.05287
5.13714 18.4380
u = 1.056330 + 0.061026I
2.61740 3.12405I 13.03032 + 4.71506I
u = 1.056330 0.061026I
2.61740 + 3.12405I 13.03032 4.71506I
u = 0.636819 + 0.693070I
0.007012 + 0.662924I 11.48005 1.53290I
u = 0.636819 0.693070I
0.007012 0.662924I 11.48005 + 1.53290I
u = 1.082110 + 0.105469I
6.12682 + 4.72021I 11.09441 3.42797I
u = 1.082110 0.105469I
6.12682 4.72021I 11.09441 + 3.42797I
u = 0.858044 + 0.724840I
6.28397 2.75786I 2.60459 + 3.27604I
u = 0.858044 0.724840I
6.28397 + 2.75786I 2.60459 3.27604I
u = 0.989901 + 0.536666I
8.67678 1.64389I 8.39822 + 2.78158I
u = 0.989901 0.536666I
8.67678 + 1.64389I 8.39822 2.78158I
u = 0.971964 + 0.621405I
0.65027 + 2.73837I 9.34927 0.96616I
u = 0.971964 0.621405I
0.65027 2.73837I 9.34927 + 0.96616I
u = 0.869866 + 0.770916I
16.1380 + 2.8994I 2.41783 2.82935I
u = 0.869866 0.770916I
16.1380 2.8994I 2.41783 + 2.82935I
u = 1.002990 + 0.660346I
1.07052 5.91452I 13.1301 + 6.2502I
u = 1.002990 0.660346I
1.07052 + 5.91452I 13.1301 6.2502I
u = 1.016710 + 0.688378I
2.09241 + 9.07761I 7.53326 8.39661I
u = 1.016710 0.688378I
2.09241 9.07761I 7.53326 + 8.39661I
u = 1.028400 + 0.706586I
11.3054 10.8467I 6.07367 + 6.73348I
u = 1.028400 0.706586I
11.3054 + 10.8467I 6.07367 6.73348I
u = 0.283633 + 0.646722I
10.54710 2.61943I 4.33176 + 2.54357I
u = 0.283633 0.646722I
10.54710 + 2.61943I 4.33176 2.54357I
u = 0.343359 + 0.506821I
1.71293 + 1.66616I 5.31847 4.81567I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.343359 0.506821I
1.71293 1.66616I 5.31847 + 4.81567I
u = 0.432503
0.576779 17.4950
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
32
+ u
31
+ ··· 2u 1
c
2
, c
6
u
32
+ 11u
31
+ ··· + 8u + 1
c
3
, c
4
, c
5
c
9
, c
10
u
32
u
31
+ ··· 2u 1
c
8
, c
11
u
32
u
31
+ ··· + 8u 4
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
32
11y
31
+ ··· 8y + 1
c
2
, c
6
y
32
+ 21y
31
+ ··· 8y + 1
c
3
, c
4
, c
5
c
9
, c
10
y
32
+ 41y
31
+ ··· 8y + 1
c
8
, c
11
y
32
15y
31
+ ··· 280y + 16
8