11a
242
(K11a
242
)
A knot diagram
1
Linearized knot diagam
7 1 10 11 9 8 2 6 3 4 5
Solving Sequence
2,8
7 1 3 6 9 10 5 11 4
c
7
c
1
c
2
c
6
c
8
c
9
c
5
c
11
c
4
c
3
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
23
+ u
22
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
23
+ u
22
+ · · · 2u 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
6
=
u
2
+ 1
u
2
a
9
=
u
4
u
2
+ 1
u
4
a
10
=
u
12
+ u
10
3u
8
+ 2u
6
u
2
+ 1
u
14
2u
12
+ 5u
10
6u
8
+ 6u
6
2u
4
+ u
2
a
5
=
u
6
+ u
4
2u
2
+ 1
u
6
u
2
a
11
=
u
15
+ 2u
13
6u
11
+ 8u
9
10u
7
+ 8u
5
4u
3
+ 2u
u
15
+ u
13
4u
11
+ 3u
9
4u
7
+ 2u
5
2u
3
+ u
a
4
=
u
21
2u
19
+ 7u
17
10u
15
+ 14u
13
12u
11
+ 5u
9
+ 2u
7
5u
5
+ 2u
3
u
u
22
+ u
21
+ ··· u 1
a
4
=
u
21
2u
19
+ 7u
17
10u
15
+ 14u
13
12u
11
+ 5u
9
+ 2u
7
5u
5
+ 2u
3
u
u
22
+ u
21
+ ··· u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
22
12u
20
4u
19
+ 40u
18
+ 8u
17
80u
16
28u
15
+ 132u
14
+ 40u
13
176u
12
56u
11
+ 172u
10
+ 48u
9
144u
8
24u
7
+ 80u
6
4u
5
44u
4
+ 8u
3
+ 16u
2
18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
23
+ u
22
+ ··· 2u 1
c
2
, c
5
, c
6
c
8
u
23
+ 5u
22
+ ··· + 8u + 1
c
3
, c
4
, c
9
c
10
, c
11
u
23
+ u
22
+ ··· 4u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
23
5y
22
+ ··· + 8y 1
c
2
, c
5
, c
6
c
8
y
23
+ 27y
22
+ ··· + 4y 1
c
3
, c
4
, c
9
c
10
, c
11
y
23
29y
22
+ ··· + 8y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.870875 + 0.464972I
1.83130 + 4.25551I 14.9090 7.7889I
u = 0.870875 0.464972I
1.83130 4.25551I 14.9090 + 7.7889I
u = 0.971379
13.4466 20.2820
u = 0.958938 + 0.461987I
10.82570 5.40102I 16.2163 + 5.6771I
u = 0.958938 0.461987I
10.82570 + 5.40102I 16.2163 5.6771I
u = 0.717237 + 0.485490I
1.10748 1.87873I 6.66063 + 5.68345I
u = 0.717237 0.485490I
1.10748 + 1.87873I 6.66063 5.68345I
u = 0.861396
4.23946 21.1260
u = 0.362544 + 0.678780I
8.93621 + 1.22135I 11.90750 0.10584I
u = 0.362544 0.678780I
8.93621 1.22135I 11.90750 + 0.10584I
u = 0.861249 + 0.901922I
1.94992 2.55399I 11.84797 + 0.31976I
u = 0.861249 0.901922I
1.94992 + 2.55399I 11.84797 0.31976I
u = 0.890856 + 0.885729I
6.62290 + 0.44894I 10.13262 1.46638I
u = 0.890856 0.885729I
6.62290 0.44894I 10.13262 + 1.46638I
u = 0.921402 + 0.875942I
9.09276 + 3.24062I 6.19152 2.55557I
u = 0.921402 0.875942I
9.09276 3.24062I 6.19152 + 2.55557I
u = 0.947828 + 0.861357I
6.44204 6.91342I 10.56964 + 6.26257I
u = 0.947828 0.861357I
6.44204 + 6.91342I 10.56964 6.26257I
u = 0.973841 + 0.851585I
2.30857 + 9.03328I 12.45199 5.05219I
u = 0.973841 0.851585I
2.30857 9.03328I 12.45199 + 5.05219I
u = 0.457331 + 0.511324I
0.602334 0.458552I 11.06917 + 1.12837I
u = 0.457331 0.511324I
0.602334 + 0.458552I 11.06917 1.12837I
u = 0.475427
0.610128 16.6790
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
23
+ u
22
+ ··· 2u 1
c
2
, c
5
, c
6
c
8
u
23
+ 5u
22
+ ··· + 8u + 1
c
3
, c
4
, c
9
c
10
, c
11
u
23
+ u
22
+ ··· 4u 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
23
5y
22
+ ··· + 8y 1
c
2
, c
5
, c
6
c
8
y
23
+ 27y
22
+ ··· + 4y 1
c
3
, c
4
, c
9
c
10
, c
11
y
23
29y
22
+ ··· + 8y 1
7