11a
244
(K11a
244
)
A knot diagram
1
Linearized knot diagam
7 1 10 8 11 9 2 5 3 6 4
Solving Sequence
6,10 4,11
1 3 2 5 9 7 8
c
10
c
11
c
3
c
2
c
5
c
9
c
6
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.39064 × 10
39
u
31
+ 4.83121 × 10
39
u
30
+ ··· + 3.73404 × 10
41
b + 3.85648 × 10
41
,
5.47363 × 10
41
u
31
1.44531 × 10
42
u
30
+ ··· + 1.94170 × 10
43
a + 9.06455 × 10
42
,
u
32
3u
31
+ ··· + 114u 26i
I
u
2
= h2u
23
a + 2u
23
+ ··· + 3a + 2, 4u
23
a 10u
23
+ ··· + 4a 8, u
24
+ u
23
+ ··· + 2u + 1i
I
u
3
= hb + u, 4a
2
12au 2a + 3u 8, u
2
+ 1i
I
u
4
= hb + 1, 6a u + 2, u
2
2i
I
v
1
= ha, b 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 87 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.39 × 10
39
u
31
+ 4.83 × 10
39
u
30
+ · · · + 3.73 × 10
41
b + 3.86 ×
10
41
, 5.47 × 10
41
u
31
1.45 × 10
42
u
30
+ · · · + 1.94 × 10
43
a + 9.06 ×
10
42
, u
32
3u
31
+ · · · + 114u 26i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
4
=
0.0281899u
31
+ 0.0744353u
30
+ ··· + 6.65054u 0.466836
0.0117584u
31
0.0129383u
30
+ ··· + 4.93202u 1.03279
a
11
=
1
u
2
a
1
=
0.0176665u
31
0.0552376u
30
+ ··· + 0.409548u + 0.504274
0.00785720u
31
0.0192778u
30
+ ··· + 0.867861u 0.446163
a
3
=
0.0164315u
31
+ 0.0614970u
30
+ ··· + 11.5826u 1.49963
0.0117584u
31
0.0129383u
30
+ ··· + 4.93202u 1.03279
a
2
=
0.0234202u
31
0.0628944u
30
+ ··· + 8.74105u 1.33147
0.00391087u
31
+ 0.00194896u
30
+ ··· + 1.97724u 0.532828
a
5
=
u
u
3
+ u
a
9
=
0.0295883u
31
+ 0.0920957u
30
+ ··· + 1.53443u + 1.13656
0.0239060u
31
0.0827478u
30
+ ··· 3.89581u + 0.819535
a
7
=
0.0149220u
31
0.0655790u
30
+ ··· 10.0660u + 1.54772
0.00696861u
31
+ 0.0183587u
30
+ ··· + 1.25096u 0.0818115
a
8
=
0.0519253u
31
+ 0.163878u
30
+ ··· + 3.90769u + 0.830841
0.0106080u
31
0.0452849u
30
+ ··· 2.64731u + 0.637885
a
8
=
0.0519253u
31
+ 0.163878u
30
+ ··· + 3.90769u + 0.830841
0.0106080u
31
0.0452849u
30
+ ··· 2.64731u + 0.637885
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.141620u
31
+ 0.504992u
30
+ ··· + 51.3458u 23.3173
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
32
+ 3u
31
+ ··· 46u 10
c
2
u
32
+ 17u
31
+ ··· + 596u + 100
c
3
, c
4
, c
8
c
9
u
32
+ u
31
+ ··· 8u 1
c
5
, c
10
u
32
+ 3u
31
+ ··· 114u 26
c
6
, c
11
16(16u
32
32u
31
+ ··· + 20u + 1)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
32
17y
31
+ ··· 596y + 100
c
2
y
32
y
31
+ ··· 264816y + 10000
c
3
, c
4
, c
8
c
9
y
32
11y
31
+ ··· 24y + 1
c
5
, c
10
y
32
+ 13y
31
+ ··· + 8740y + 676
c
6
, c
11
256(256y
32
+ 1664y
31
+ ··· 136y + 1)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.247680 + 0.984503I
a = 0.230631 + 0.815096I
b = 0.374640 + 0.105048I
1.44688 2.10542I 10.64510 + 3.10426I
u = 0.247680 0.984503I
a = 0.230631 0.815096I
b = 0.374640 0.105048I
1.44688 + 2.10542I 10.64510 3.10426I
u = 0.322065 + 1.002960I
a = 0.79959 + 1.57315I
b = 0.494847 1.304260I
3.40906 3.86825I 10.66165 + 7.93865I
u = 0.322065 1.002960I
a = 0.79959 1.57315I
b = 0.494847 + 1.304260I
3.40906 + 3.86825I 10.66165 7.93865I
u = 0.749051 + 0.842571I
a = 0.838998 0.649336I
b = 0.805918 + 0.420403I
1.15662 1.21443I 10.34690 + 5.00886I
u = 0.749051 0.842571I
a = 0.838998 + 0.649336I
b = 0.805918 0.420403I
1.15662 + 1.21443I 10.34690 5.00886I
u = 0.261685 + 1.100560I
a = 0.69752 + 1.32278I
b = 0.560070 1.085440I
4.73730 0.53503I 5.59189 1.15953I
u = 0.261685 1.100560I
a = 0.69752 1.32278I
b = 0.560070 + 1.085440I
4.73730 + 0.53503I 5.59189 + 1.15953I
u = 1.159410 + 0.253577I
a = 0.235640 0.264464I
b = 1.242110 + 0.484247I
6.13645 + 10.98730I 16.3430 7.4849I
u = 1.159410 0.253577I
a = 0.235640 + 0.264464I
b = 1.242110 0.484247I
6.13645 10.98730I 16.3430 + 7.4849I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.140650 + 0.360946I
a = 0.307006 0.172337I
b = 1.128760 + 0.444978I
3.38197 5.23032I 13.5291 + 4.8406I
u = 1.140650 0.360946I
a = 0.307006 + 0.172337I
b = 1.128760 0.444978I
3.38197 + 5.23032I 13.5291 4.8406I
u = 0.141488 + 0.788388I
a = 0.36135 + 2.04053I
b = 0.099839 1.311650I
2.29463 + 1.59601I 17.2362 + 0.3937I
u = 0.141488 0.788388I
a = 0.36135 2.04053I
b = 0.099839 + 1.311650I
2.29463 1.59601I 17.2362 0.3937I
u = 0.736458 + 1.048230I
a = 0.625364 1.039090I
b = 0.962297 + 0.501826I
1.70241 + 7.23076I 10.37930 9.14942I
u = 0.736458 1.048230I
a = 0.625364 + 1.039090I
b = 0.962297 0.501826I
1.70241 7.23076I 10.37930 + 9.14942I
u = 0.097231 + 1.300930I
a = 0.428856 + 0.829956I
b = 0.638240 0.573688I
3.55297 1.35902I 6.22009 + 3.91725I
u = 0.097231 1.300930I
a = 0.428856 0.829956I
b = 0.638240 + 0.573688I
3.55297 + 1.35902I 6.22009 3.91725I
u = 0.66504 + 1.26287I
a = 0.08339 1.53240I
b = 1.242040 + 0.607992I
0.46603 + 11.63550I 10.91066 6.70327I
u = 0.66504 1.26287I
a = 0.08339 + 1.53240I
b = 1.242040 0.607992I
0.46603 11.63550I 10.91066 + 6.70327I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.64627 + 1.29426I
a = 0.04894 1.63210I
b = 1.30934 + 0.63525I
2.8457 17.3477I 13.2852 + 10.0205I
u = 0.64627 1.29426I
a = 0.04894 + 1.63210I
b = 1.30934 0.63525I
2.8457 + 17.3477I 13.2852 10.0205I
u = 1.38769 + 0.52320I
a = 0.203571 0.024919I
b = 1.092060 + 0.243675I
9.14170 + 1.02273I 18.9526 6.3910I
u = 1.38769 0.52320I
a = 0.203571 + 0.024919I
b = 1.092060 0.243675I
9.14170 1.02273I 18.9526 + 6.3910I
u = 0.75214 + 1.28922I
a = 0.023703 1.211370I
b = 1.242430 + 0.458182I
6.39323 8.37491I 16.6922 + 6.0879I
u = 0.75214 1.28922I
a = 0.023703 + 1.211370I
b = 1.242430 0.458182I
6.39323 + 8.37491I 16.6922 6.0879I
u = 0.15834 + 1.54684I
a = 0.519510 + 0.469576I
b = 0.921773 0.411908I
0.43477 + 5.74906I 12.0210 8.3466I
u = 0.15834 1.54684I
a = 0.519510 0.469576I
b = 0.921773 + 0.411908I
0.43477 5.74906I 12.0210 + 8.3466I
u = 1.61248
a = 0.366965
b = 0.861180
7.60439 2.56870
u = 0.027688 + 0.377024I
a = 0.62467 + 1.38038I
b = 0.136888 + 0.524281I
1.38354 2.30080I 9.19830 + 4.85013I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.027688 0.377024I
a = 0.62467 1.38038I
b = 0.136888 0.524281I
1.38354 + 2.30080I 9.19830 4.85013I
u = 0.332429
a = 0.529099
b = 0.305964
0.575721 17.4050
8
II. I
u
2
=
h2u
23
a+2u
23
+· · ·+3a+2, 4u
23
a10u
23
+· · ·+4a8, u
24
+u
23
+· · ·+2u+1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
4
=
a
2u
23
a 2u
23
+ ··· 3a 2
a
11
=
1
u
2
a
1
=
2u
22
a + 12u
23
+ ··· + 2a + 11
2u
22
+ 2u
21
+ ··· + 4u + 5
a
3
=
2u
23
a 2u
23
+ ··· 2a 2
2u
23
a 2u
23
+ ··· 3a 2
a
2
=
2u
22
a 2u
23
+ ··· a + 12
2u
23
a 4u
23
+ ··· 3a 2
a
5
=
u
u
3
+ u
a
9
=
3u
23
a 2u
23
+ ··· 4a 6
u
23
a 2u
23
+ ··· 2a 4
a
7
=
2u
23
a 8u
23
+ ··· 2a + 10
2u
23
a + u
22
a + ··· + 3a + 2
a
8
=
2u
23
a u
22
+ ··· 2a 4
1
a
8
=
2u
23
a u
22
+ ··· 2a 4
1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
23
4u
22
24u
21
20u
20
68u
19
52u
18
108u
17
80u
16
96u
15
84u
14
32u
13
52u
12
+ 24u
11
8u
10
+ 32u
9
+ 28u
8
+ 16u
7
+ 20u
6
+ 4u
4
+ 4u
3
4u
2
4u 18
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
24
u
23
+ ··· 2u
3
+ 1)
2
c
2
(u
24
+ 11u
23
+ ··· 2u
2
+ 1)
2
c
3
, c
4
, c
8
c
9
u
48
+ u
47
+ ··· + 60u + 17
c
5
, c
10
(u
24
u
23
+ ··· 2u + 1)
2
c
6
, c
11
u
48
+ 19u
47
+ ··· 5852u + 617
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
24
11y
23
+ ··· 2y
2
+ 1)
2
c
2
(y
24
+ 5y
23
+ ··· 4y + 1)
2
c
3
, c
4
, c
8
c
9
y
48
29y
47
+ ··· 2036y + 289
c
5
, c
10
(y
24
+ 13y
23
+ ··· 2y
2
+ 1)
2
c
6
, c
11
y
48
17y
47
+ ··· + 4462208y + 380689
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.539628 + 0.849352I
a = 0.543922 + 0.247508I
b = 1.51045 + 0.21810I
5.72979 5.71321I 16.1082 + 7.5036I
u = 0.539628 + 0.849352I
a = 0.33191 2.03598I
b = 1.039360 + 0.760521I
5.72979 5.71321I 16.1082 + 7.5036I
u = 0.539628 0.849352I
a = 0.543922 0.247508I
b = 1.51045 0.21810I
5.72979 + 5.71321I 16.1082 7.5036I
u = 0.539628 0.849352I
a = 0.33191 + 2.03598I
b = 1.039360 0.760521I
5.72979 + 5.71321I 16.1082 7.5036I
u = 0.096397 + 0.986281I
a = 4.87120 + 4.00215I
b = 1.080380 + 0.019593I
1.54603 + 2.05721I 7.72702 4.01793I
u = 0.096397 + 0.986281I
a = 4.84423 6.02369I
b = 0.896362 + 0.034778I
1.54603 + 2.05721I 7.72702 4.01793I
u = 0.096397 0.986281I
a = 4.87120 4.00215I
b = 1.080380 0.019593I
1.54603 2.05721I 7.72702 + 4.01793I
u = 0.096397 0.986281I
a = 4.84423 + 6.02369I
b = 0.896362 0.034778I
1.54603 2.05721I 7.72702 + 4.01793I
u = 0.414627 + 0.808476I
a = 0.00257518 0.01121480I
b = 1.306580 + 0.198887I
3.23391 + 1.77225I 11.98912 4.04184I
u = 0.414627 + 0.808476I
a = 0.35931 2.22876I
b = 0.979446 + 0.498112I
3.23391 + 1.77225I 11.98912 4.04184I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.414627 0.808476I
a = 0.00257518 + 0.01121480I
b = 1.306580 0.198887I
3.23391 1.77225I 11.98912 + 4.04184I
u = 0.414627 0.808476I
a = 0.35931 + 2.22876I
b = 0.979446 0.498112I
3.23391 1.77225I 11.98912 + 4.04184I
u = 0.542169 + 0.664263I
a = 0.666243 0.437409I
b = 1.306800 + 0.469542I
6.25412 + 1.34320I 18.0296 0.6200I
u = 0.542169 + 0.664263I
a = 0.14319 1.94467I
b = 1.290650 + 0.487392I
6.25412 + 1.34320I 18.0296 0.6200I
u = 0.542169 0.664263I
a = 0.666243 + 0.437409I
b = 1.306800 0.469542I
6.25412 1.34320I 18.0296 + 0.6200I
u = 0.542169 0.664263I
a = 0.14319 + 1.94467I
b = 1.290650 0.487392I
6.25412 1.34320I 18.0296 + 0.6200I
u = 0.796432 + 0.144602I
a = 0.786039 0.575477I
b = 0.017969 + 0.851963I
2.49287 6.17959I 13.7852 + 5.0455I
u = 0.796432 + 0.144602I
a = 0.197166 0.175593I
b = 1.233680 0.435221I
2.49287 6.17959I 13.7852 + 5.0455I
u = 0.796432 0.144602I
a = 0.786039 + 0.575477I
b = 0.017969 0.851963I
2.49287 + 6.17959I 13.7852 5.0455I
u = 0.796432 0.144602I
a = 0.197166 + 0.175593I
b = 1.233680 + 0.435221I
2.49287 + 6.17959I 13.7852 5.0455I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.472424 + 1.121720I
a = 0.004693 1.220150I
b = 0.070699 + 0.850066I
2.54173 + 3.77265I 13.8919 3.4911I
u = 0.472424 + 1.121720I
a = 0.225989 + 1.326630I
b = 1.276130 0.388706I
2.54173 + 3.77265I 13.8919 3.4911I
u = 0.472424 1.121720I
a = 0.004693 + 1.220150I
b = 0.070699 0.850066I
2.54173 3.77265I 13.8919 + 3.4911I
u = 0.472424 1.121720I
a = 0.225989 1.326630I
b = 1.276130 + 0.388706I
2.54173 3.77265I 13.8919 + 3.4911I
u = 0.766849 + 0.083191I
a = 0.769852 0.382628I
b = 0.169700 + 0.594156I
0.655501 + 1.182900I 10.60754 0.39910I
u = 0.766849 + 0.083191I
a = 0.400701 0.069987I
b = 1.032180 0.364777I
0.655501 + 1.182900I 10.60754 0.39910I
u = 0.766849 0.083191I
a = 0.769852 + 0.382628I
b = 0.169700 0.594156I
0.655501 1.182900I 10.60754 + 0.39910I
u = 0.766849 0.083191I
a = 0.400701 + 0.069987I
b = 1.032180 + 0.364777I
0.655501 1.182900I 10.60754 + 0.39910I
u = 0.376287 + 1.204930I
a = 0.475135 + 0.983255I
b = 0.513121 0.339665I
1.53995 2.24524I 8.97303 + 1.89383I
u = 0.376287 + 1.204930I
a = 0.408284 + 0.298929I
b = 0.696267 + 0.307021I
1.53995 2.24524I 8.97303 + 1.89383I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.376287 1.204930I
a = 0.475135 0.983255I
b = 0.513121 + 0.339665I
1.53995 + 2.24524I 8.97303 1.89383I
u = 0.376287 1.204930I
a = 0.408284 0.298929I
b = 0.696267 0.307021I
1.53995 + 2.24524I 8.97303 1.89383I
u = 0.413902 + 1.197930I
a = 0.198548 + 1.325430I
b = 0.820849 0.486407I
3.07007 2.92383I 6.70980 + 3.29300I
u = 0.413902 + 1.197930I
a = 0.375753 0.333805I
b = 0.476232 + 0.580933I
3.07007 2.92383I 6.70980 + 3.29300I
u = 0.413902 1.197930I
a = 0.198548 1.325430I
b = 0.820849 + 0.486407I
3.07007 + 2.92383I 6.70980 3.29300I
u = 0.413902 1.197930I
a = 0.375753 + 0.333805I
b = 0.476232 0.580933I
3.07007 + 2.92383I 6.70980 3.29300I
u = 0.486243 + 1.189530I
a = 0.531403 1.075720I
b = 0.278243 + 1.022640I
2.55519 5.78082I 7.62473 + 3.72629I
u = 0.486243 + 1.189530I
a = 0.12458 + 1.60566I
b = 1.184610 0.672538I
2.55519 5.78082I 7.62473 + 3.72629I
u = 0.486243 1.189530I
a = 0.531403 + 1.075720I
b = 0.278243 1.022640I
2.55519 + 5.78082I 7.62473 3.72629I
u = 0.486243 1.189530I
a = 0.12458 1.60566I
b = 1.184610 + 0.672538I
2.55519 + 5.78082I 7.62473 3.72629I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.512242 + 1.189930I
a = 0.590726 1.274840I
b = 0.228910 + 1.166680I
0.58237 + 11.00000I 10.68175 8.05284I
u = 0.512242 + 1.189930I
a = 0.24364 + 1.67429I
b = 1.30033 0.72492I
0.58237 + 11.00000I 10.68175 8.05284I
u = 0.512242 1.189930I
a = 0.590726 + 1.274840I
b = 0.228910 1.166680I
0.58237 11.00000I 10.68175 + 8.05284I
u = 0.512242 1.189930I
a = 0.24364 1.67429I
b = 1.30033 + 0.72492I
0.58237 11.00000I 10.68175 + 8.05284I
u = 0.580381 + 0.259924I
a = 0.625985 0.961812I
b = 1.295020 0.005614I
5.03285 + 0.40841I 17.8720 0.7556I
u = 0.580381 + 0.259924I
a = 1.20872 0.75067I
b = 0.636772 + 0.510637I
5.03285 + 0.40841I 17.8720 0.7556I
u = 0.580381 0.259924I
a = 0.625985 + 0.961812I
b = 1.295020 + 0.005614I
5.03285 0.40841I 17.8720 + 0.7556I
u = 0.580381 0.259924I
a = 1.20872 + 0.75067I
b = 0.636772 0.510637I
5.03285 0.40841I 17.8720 + 0.7556I
16
III. I
u
3
= hb + u, 4a
2
12au 2a + 3u 8, u
2
+ 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
4
=
a
u
a
11
=
1
1
a
1
=
2au +
1
2
a
3
4
u + 3
au 2
a
3
=
a u
u
a
2
=
2au +
3
2
a
11
4
u +
11
4
au a + u
3
2
a
5
=
u
0
a
9
=
au + 2
1
a
7
=
1
2
au + a 2u +
3
4
a u
a
8
=
au + 1
1
a
8
=
au + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8a 12u 8
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
4
u
2
+ 1
c
2
(u
2
+ u + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(u
2
+ 1)
2
c
6
, c
11
16(16u
4
16u
3
+ 20u
2
8u + 1)
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
2
y + 1)
2
c
2
(y
2
+ y + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y + 1)
4
c
6
, c
11
256(256y
4
+ 384y
3
+ 176y
2
24y + 1)
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.250000 + 1.066990I
b = 1.000000I
3.28987 + 2.02988I 6.00000 3.46410I
u = 1.000000I
a = 0.25000 + 1.93301I
b = 1.000000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 1.000000I
a = 0.250000 1.066990I
b = 1.000000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 1.000000I
a = 0.25000 1.93301I
b = 1.000000I
3.28987 + 2.02988I 6.00000 3.46410I
20
IV. I
u
4
= hb + 1, 6a u + 2, u
2
2i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
4
=
1
6
u
1
3
1
a
11
=
1
2
a
1
=
1
18
u + 1
1
3
u +
7
3
a
3
=
1
6
u
4
3
1
a
2
=
5
18
u +
2
3
2
3
u +
11
3
a
5
=
u
3u
a
9
=
1
6
u
1
3
1
a
7
=
1
6
u +
2
9
2
3
u +
1
3
a
8
=
5
6
u
1
3
3u 1
a
8
=
5
6
u
1
3
3u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
c
10
u
2
2
c
2
(u + 2)
2
c
3
, c
8
(u 1)
2
c
4
, c
9
(u + 1)
2
c
6
, c
11
9(9u
2
+ 6u 1)
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
c
10
(y 2)
2
c
2
(y 4)
2
c
3
, c
4
, c
8
c
9
(y 1)
2
c
6
, c
11
81(81y
2
54y + 1)
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.0976311
b = 1.00000
8.22467 20.0000
u = 1.41421
a = 0.569036
b = 1.00000
8.22467 20.0000
24
V. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
1
0
a
4
=
0
1
a
11
=
1
0
a
1
=
1
1
a
3
=
1
1
a
2
=
1
1
a
5
=
1
0
a
9
=
0
1
a
7
=
1
1
a
8
=
1
1
a
8
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
10
u
c
3
, c
8
u + 1
c
4
, c
6
, c
9
c
11
u 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
10
y
c
3
, c
4
, c
6
c
8
, c
9
, c
11
y 1
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
28
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u(u
2
2)(u
4
u
2
+ 1)(u
24
u
23
+ ··· 2u
3
+ 1)
2
· (u
32
+ 3u
31
+ ··· 46u 10)
c
2
u(u + 2)
2
(u
2
+ u + 1)
2
(u
24
+ 11u
23
+ ··· 2u
2
+ 1)
2
· (u
32
+ 17u
31
+ ··· + 596u + 100)
c
3
, c
8
((u 1)
2
)(u + 1)(u
2
+ 1)
2
(u
32
+ u
31
+ ··· 8u 1)
· (u
48
+ u
47
+ ··· + 60u + 17)
c
4
, c
9
(u 1)(u + 1)
2
(u
2
+ 1)
2
(u
32
+ u
31
+ ··· 8u 1)
· (u
48
+ u
47
+ ··· + 60u + 17)
c
5
, c
10
u(u
2
2)(u
2
+ 1)
2
(u
24
u
23
+ ··· 2u + 1)
2
· (u
32
+ 3u
31
+ ··· 114u 26)
c
6
, c
11
2304(u 1)(9u
2
+ 6u 1)(16u
4
16u
3
+ 20u
2
8u + 1)
· (16u
32
32u
31
+ ··· + 20u + 1)(u
48
+ 19u
47
+ ··· 5852u + 617)
29
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y(y 2)
2
(y
2
y + 1)
2
(y
24
11y
23
+ ··· 2y
2
+ 1)
2
· (y
32
17y
31
+ ··· 596y + 100)
c
2
y(y 4)
2
(y
2
+ y + 1)
2
(y
24
+ 5y
23
+ ··· 4y + 1)
2
· (y
32
y
31
+ ··· 264816y + 10000)
c
3
, c
4
, c
8
c
9
((y 1)
3
)(y + 1)
4
(y
32
11y
31
+ ··· 24y + 1)
· (y
48
29y
47
+ ··· 2036y + 289)
c
5
, c
10
y(y 2)
2
(y + 1)
4
(y
24
+ 13y
23
+ ··· 2y
2
+ 1)
2
· (y
32
+ 13y
31
+ ··· + 8740y + 676)
c
6
, c
11
5308416(y 1)(81y
2
54y + 1)(256y
4
+ 384y
3
+ ··· 24y + 1)
· (256y
32
+ 1664y
31
+ ··· 136y + 1)
· (y
48
17y
47
+ ··· + 4462208y + 380689)
30