11a
245
(K11a
245
)
A knot diagram
1
Linearized knot diagam
7 1 11 10 9 8 2 5 6 3 4
Solving Sequence
3,10
11 4 5 1
2,6
9 8 7
c
10
c
3
c
4
c
11
c
2
c
9
c
8
c
7
c
1
, c
5
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
12
+ u
11
+ 5u
10
4u
9
9u
8
+ 4u
7
+ 4u
6
+ 4u
5
+ 6u
4
7u
3
5u
2
+ a u 1,
u
14
u
13
6u
12
+ 5u
11
+ 14u
10
8u
9
13u
8
2u
6
+ 11u
5
+ 11u
4
5u
3
4u
2
4u 1i
I
u
2
= h−u
23
+ 8u
21
+ ··· + b + 1, u
22
7u
20
+ ··· + a 1, u
24
u
23
+ ··· + 4u
2
+ 1i
I
u
3
= hb + 1, a, u 1i
* 3 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
12
+ u
11
+ · · · + a 1, u
14
u
13
+ · · · 4u 1i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
u
3
+ u
a
5
=
u
3
2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
6
=
u
12
u
11
+ ··· + u + 1
u
a
9
=
u
13
+ u
12
+ ··· u + 1
u
2
a
8
=
u
13
+ u
12
+ ··· u + 1
u
4
2u
2
a
7
=
u
12
u
11
5u
10
+ 4u
9
+ 9u
8
5u
7
4u
6
6u
4
+ 3u
3
+ 5u
2
+ 1
u
7
3u
5
+ 2u
3
+ u
a
7
=
u
12
u
11
5u
10
+ 4u
9
+ 9u
8
5u
7
4u
6
6u
4
+ 3u
3
+ 5u
2
+ 1
u
7
3u
5
+ 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
12
2u
11
+14u
10
+12u
9
34u
8
28u
7
+24u
6
+24u
5
+28u
4
+10u
3
38u
2
24u 20
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
14
+ 3u
13
+ ··· + 4u + 2
c
2
, c
4
, c
6
u
14
+ 3u
13
+ ··· + 20u + 4
c
3
, c
5
, c
8
c
9
, c
10
, c
11
u
14
u
13
+ ··· 4u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
14
3y
13
+ ··· 20y + 4
c
2
, c
4
, c
6
y
14
+ 13y
13
+ ··· 168y + 16
c
3
, c
5
, c
8
c
9
, c
10
, c
11
y
14
13y
13
+ ··· 8y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.029285 + 0.881113I
a = 0.03342 1.87376I
b = 0.029285 + 0.881113I
8.40861 + 3.17852I 5.65702 2.68027I
u = 0.029285 0.881113I
a = 0.03342 + 1.87376I
b = 0.029285 0.881113I
8.40861 3.17852I 5.65702 + 2.68027I
u = 1.276220 + 0.129179I
a = 2.13229 1.54329I
b = 1.276220 + 0.129179I
5.86531 + 2.46178I 16.4162 2.9434I
u = 1.276220 0.129179I
a = 2.13229 + 1.54329I
b = 1.276220 0.129179I
5.86531 2.46178I 16.4162 + 2.9434I
u = 1.284590 + 0.394747I
a = 0.34217 2.13508I
b = 1.284590 + 0.394747I
0.58736 + 5.97274I 12.69846 3.76747I
u = 1.284590 0.394747I
a = 0.34217 + 2.13508I
b = 1.284590 0.394747I
0.58736 5.97274I 12.69846 + 3.76747I
u = 1.364060 + 0.212940I
a = 1.10215 1.44780I
b = 1.364060 + 0.212940I
8.69313 7.21786I 18.5779 + 6.6599I
u = 1.364060 0.212940I
a = 1.10215 + 1.44780I
b = 1.364060 0.212940I
8.69313 + 7.21786I 18.5779 6.6599I
u = 1.38564
a = 1.62659
b = 1.38564
11.4128 21.8330
u = 1.329060 + 0.410124I
a = 0.27755 1.96683I
b = 1.329060 + 0.410124I
0.11168 12.47310I 13.5601 + 7.9056I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.329060 0.410124I
a = 0.27755 + 1.96683I
b = 1.329060 0.410124I
0.11168 + 12.47310I 13.5601 7.9056I
u = 0.150725 + 0.518889I
a = 0.285959 1.368390I
b = 0.150725 + 0.518889I
1.00801 + 1.75508I 6.01712 6.20279I
u = 0.150725 0.518889I
a = 0.285959 + 1.368390I
b = 0.150725 0.518889I
1.00801 1.75508I 6.01712 + 6.20279I
u = 0.290248
a = 0.924145
b = 0.290248
0.639037 16.3130
6
II.
I
u
2
= h−u
23
+8u
21
+· · ·+b+1, u
22
7u
20
+· · ·+a1, u
24
u
23
+· · ·+4u
2
+1i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
u
3
+ u
a
5
=
u
3
2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
6
=
u
22
+ 7u
20
+ ··· + 5u + 1
u
23
8u
21
+ ··· u 1
a
9
=
u
21
+ 8u
19
+ ··· + 5u + 2
u
23
7u
21
+ ··· u 2
a
8
=
u
19
6u
17
+ ··· + 4u + 1
2u
23
15u
21
+ ··· u 2
a
7
=
u
16
+ 5u
14
+ ··· + 4u + 1
2u
23
16u
21
+ ··· u 2
a
7
=
u
16
+ 5u
14
+ ··· + 4u + 1
2u
23
16u
21
+ ··· u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
20
+ 28u
18
+ 4u
17
80u
16
24u
15
+ 100u
14
+ 56u
13
4u
12
48u
11
124u
10
24u
9
+ 92u
8
+ 64u
7
+ 36u
6
12u
5
44u
4
24u
3
8u
2
10
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
12
u
11
u
10
+ 2u
9
+ 3u
8
4u
7
2u
6
+ 4u
5
+ 2u
4
3u
3
u
2
+ 1)
2
c
2
, c
4
, c
6
(u
12
+ 3u
11
+ ··· + 2u + 1)
2
c
3
, c
5
, c
8
c
9
, c
10
, c
11
u
24
u
23
+ ··· + 4u
2
+ 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
12
3y
11
+ ··· 2y + 1)
2
c
2
, c
4
, c
6
(y
12
+ 13y
11
+ ··· + 6y + 1)
2
c
3
, c
5
, c
8
c
9
, c
10
, c
11
y
24
17y
23
+ ··· + 8y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.070751 + 0.894321I
a = 1.21139 + 1.52083I
b = 1.299300 0.409615I
4.26829 + 7.80134I 9.63389 5.63981I
u = 0.070751 0.894321I
a = 1.21139 1.52083I
b = 1.299300 + 0.409615I
4.26829 7.80134I 9.63389 + 5.63981I
u = 1.110590 + 0.134720I
a = 0.738153 + 0.451331I
b = 0.149210 0.343690I
1.55013 + 0.71593I 8.04353 0.64874I
u = 1.110590 0.134720I
a = 0.738153 0.451331I
b = 0.149210 + 0.343690I
1.55013 0.71593I 8.04353 + 0.64874I
u = 0.778878 + 0.387180I
a = 0.213014 + 0.440226I
b = 1.242510 + 0.071539I
4.72717 0.35310I 18.6669 + 0.6298I
u = 0.778878 0.387180I
a = 0.213014 0.440226I
b = 1.242510 0.071539I
4.72717 + 0.35310I 18.6669 0.6298I
u = 0.013292 + 0.856991I
a = 1.23384 + 1.58823I
b = 1.251930 0.421635I
4.62532 1.48234I 8.84742 + 0.67542I
u = 0.013292 0.856991I
a = 1.23384 1.58823I
b = 1.251930 + 0.421635I
4.62532 + 1.48234I 8.84742 0.67542I
u = 1.242510 + 0.071539I
a = 0.023283 0.340995I
b = 0.778878 + 0.387180I
4.72717 0.35310I 18.6669 + 0.6298I
u = 1.242510 0.071539I
a = 0.023283 + 0.340995I
b = 0.778878 0.387180I
4.72717 + 0.35310I 18.6669 0.6298I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.321894 + 0.643464I
a = 0.65810 + 1.42592I
b = 1.279920 0.182904I
3.36661 + 4.24921I 14.1765 6.9831I
u = 0.321894 0.643464I
a = 0.65810 1.42592I
b = 1.279920 + 0.182904I
3.36661 4.24921I 14.1765 + 6.9831I
u = 1.279920 + 0.182904I
a = 0.443771 + 0.752880I
b = 0.321894 0.643464I
3.36661 4.24921I 14.1765 + 6.9831I
u = 1.279920 0.182904I
a = 0.443771 0.752880I
b = 0.321894 + 0.643464I
3.36661 + 4.24921I 14.1765 6.9831I
u = 1.213270 + 0.447486I
a = 0.537563 0.128960I
b = 1.263090 + 0.396551I
0.75031 3.01307I 12.63175 + 2.63251I
u = 1.213270 0.447486I
a = 0.537563 + 0.128960I
b = 1.263090 0.396551I
0.75031 + 3.01307I 12.63175 2.63251I
u = 1.251930 + 0.421635I
a = 0.704102 + 1.098600I
b = 0.013292 0.856991I
4.62532 + 1.48234I 8.84742 0.67542I
u = 1.251930 0.421635I
a = 0.704102 1.098600I
b = 0.013292 + 0.856991I
4.62532 1.48234I 8.84742 + 0.67542I
u = 1.263090 + 0.396551I
a = 0.492596 0.221226I
b = 1.213270 + 0.447486I
0.75031 3.01307I 12.63175 + 2.63251I
u = 1.263090 0.396551I
a = 0.492596 + 0.221226I
b = 1.213270 0.447486I
0.75031 + 3.01307I 12.63175 2.63251I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.299300 + 0.409615I
a = 0.629315 + 1.115020I
b = 0.070751 0.894321I
4.26829 7.80134I 9.63389 + 5.63981I
u = 1.299300 0.409615I
a = 0.629315 1.115020I
b = 0.070751 + 0.894321I
4.26829 + 7.80134I 9.63389 5.63981I
u = 0.149210 + 0.343690I
a = 0.04774 + 2.58289I
b = 1.110590 0.134720I
1.55013 0.71593I 8.04353 + 0.64874I
u = 0.149210 0.343690I
a = 0.04774 2.58289I
b = 1.110590 + 0.134720I
1.55013 + 0.71593I 8.04353 0.64874I
12
III. I
u
3
= hb + 1, a, u 1i
(i) Arc colorings
a
3
=
0
1
a
10
=
1
0
a
11
=
1
1
a
4
=
1
0
a
5
=
1
0
a
1
=
0
1
a
2
=
0
1
a
6
=
0
1
a
9
=
1
1
a
8
=
0
1
a
7
=
0
1
a
7
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
u
c
3
, c
8
, c
9
u + 1
c
5
, c
10
, c
11
u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
y
c
3
, c
5
, c
8
c
9
, c
10
, c
11
y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u(u
12
u
11
u
10
+ 2u
9
+ 3u
8
4u
7
2u
6
+ 4u
5
+ 2u
4
3u
3
u
2
+ 1)
2
· (u
14
+ 3u
13
+ ··· + 4u + 2)
c
2
, c
4
, c
6
u(u
12
+ 3u
11
+ ··· + 2u + 1)
2
(u
14
+ 3u
13
+ ··· + 20u + 4)
c
3
, c
8
, c
9
(u + 1)(u
14
u
13
+ ··· 4u 1)(u
24
u
23
+ ··· + 4u
2
+ 1)
c
5
, c
10
, c
11
(u 1)(u
14
u
13
+ ··· 4u 1)(u
24
u
23
+ ··· + 4u
2
+ 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y(y
12
3y
11
+ ··· 2y + 1)
2
(y
14
3y
13
+ ··· 20y + 4)
c
2
, c
4
, c
6
y(y
12
+ 13y
11
+ ··· + 6y + 1)
2
(y
14
+ 13y
13
+ ··· 168y + 16)
c
3
, c
5
, c
8
c
9
, c
10
, c
11
(y 1)(y
14
13y
13
+ ··· 8y + 1)(y
24
17y
23
+ ··· + 8y + 1)
18