11a
248
(K11a
248
)
A knot diagram
1
Linearized knot diagam
9 8 1 2 3 11 10 5 4 6 7
Solving Sequence
6,11
7
1,4
3 5 10 8 2 9
c
6
c
11
c
3
c
5
c
10
c
7
c
2
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−7806u
39
28939u
38
+ ··· + 1091b + 30599, 20501u
39
+ 69845u
38
+ ··· + 4364a 128043,
u
40
+ 5u
39
+ ··· + 9u 4i
I
u
2
= hu
26
a + u
26
+ ··· + b u, 4u
26
a + 4u
26
+ ··· a + 5, u
27
2u
26
+ ··· 4u
2
1i
I
u
3
= h−u
11
+ 6u
9
+ u
8
12u
7
5u
6
+ 8u
5
+ 7u
4
+ 2u
3
2u
2
+ b 3u,
u
12
6u
10
u
9
+ 13u
8
+ 4u
7
11u
6
6u
5
+ u
4
+ 4u
3
+ 3u
2
+ a 2u 2,
u
13
2u
12
5u
11
+ 10u
10
+ 10u
9
17u
8
11u
7
+ 8u
6
+ 7u
5
+ 7u
4
u
3
7u
2
1i
I
u
4
= hb + 1, a
2
3a + 3, u + 1i
* 4 irreducible components of dim
C
= 0, with total 109 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−7806u
39
28939u
38
+ · · · + 1091b + 30599, 20501u
39
+ 69845u
38
+
· · · + 4364a 128043, u
40
+ 5u
39
+ · · · + 9u 4i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
4.69775u
39
16.0048u
38
+ ··· 70.7569u + 29.3407
7.15490u
39
+ 26.5252u
38
+ ··· + 78.3217u 28.0467
a
3
=
12.9365u
39
+ 44.7789u
38
+ ··· + 77.7912u 24.2945
13.4088u
39
49.4097u
38
+ ··· 90.1567u + 27.8689
a
5
=
7.68492u
39
28.0323u
38
+ ··· 26.6533u + 1.57356
11.5527u
39
+ 43.6728u
38
+ ··· + 54.5325u 10.8295
a
10
=
u
u
a
8
=
u
4
+ u
2
+ 1
u
4
2u
2
a
2
=
7.93103u
39
+ 26.6478u
38
+ ··· + 51.3183u 18.2514
11.2988u
39
41.7883u
38
+ ··· 83.6975u + 27.0073
a
9
=
1.73854u
39
+ 0.0602658u
38
+ ··· + 26.7647u 19.7436
1.46379u
39
2.72044u
38
+ ··· 15.8863u + 10.2997
a
9
=
1.73854u
39
+ 0.0602658u
38
+ ··· + 26.7647u 19.7436
1.46379u
39
2.72044u
38
+ ··· 15.8863u + 10.2997
(ii) Obstruction class = 1
(iii) Cusp Shapes =
10012
1091
u
39
44785
1091
u
38
+ ··· +
78319
1091
u
64130
1091
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
40
u
39
+ ··· + 2u 1
c
2
, c
9
u
40
+ 2u
38
+ ··· u 1
c
3
, c
5
u
40
+ 6u
39
+ ··· 23u + 1
c
4
u
40
+ 22u
39
+ ··· + 9u + 2
c
6
, c
10
, c
11
u
40
5u
39
+ ··· 9u 4
c
7
u
40
+ 15u
39
+ ··· + 89u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
40
+ 17y
39
+ ··· + 44y + 1
c
2
, c
9
y
40
+ 4y
39
+ ··· 23y + 1
c
3
, c
5
y
40
24y
39
+ ··· 199y + 1
c
4
y
40
+ 28y
38
+ ··· 5y + 4
c
6
, c
10
, c
11
y
40
37y
39
+ ··· 9y + 16
c
7
y
40
y
39
+ ··· 937y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.833239 + 0.478940I
a = 1.36899 + 1.05581I
b = 0.113249 0.613771I
0.67356 9.11808I 3.09330 + 5.04292I
u = 0.833239 0.478940I
a = 1.36899 1.05581I
b = 0.113249 + 0.613771I
0.67356 + 9.11808I 3.09330 5.04292I
u = 0.944818 + 0.044872I
a = 1.88518 0.83264I
b = 1.092540 + 0.590515I
1.64126 1.68382I 2.62360 + 4.24820I
u = 0.944818 0.044872I
a = 1.88518 + 0.83264I
b = 1.092540 0.590515I
1.64126 + 1.68382I 2.62360 4.24820I
u = 1.045020 + 0.426092I
a = 1.40350 0.24037I
b = 0.777991 0.700678I
1.51874 + 7.98713I 1.00079 8.43785I
u = 1.045020 0.426092I
a = 1.40350 + 0.24037I
b = 0.777991 + 0.700678I
1.51874 7.98713I 1.00079 + 8.43785I
u = 0.127215 + 0.839082I
a = 0.212294 + 0.072049I
b = 0.507546 + 1.079890I
4.35513 3.45950I 3.88332 + 4.09172I
u = 0.127215 0.839082I
a = 0.212294 0.072049I
b = 0.507546 1.079890I
4.35513 + 3.45950I 3.88332 4.09172I
u = 0.277504 + 0.801125I
a = 0.171151 0.043121I
b = 0.77473 + 1.69376I
2.45998 + 13.64270I 1.03420 9.07195I
u = 0.277504 0.801125I
a = 0.171151 + 0.043121I
b = 0.77473 1.69376I
2.45998 13.64270I 1.03420 + 9.07195I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.777292
a = 0.568128
b = 0.113354
1.36099 8.46400
u = 0.225491 + 0.702834I
a = 0.212358 + 0.335622I
b = 0.39127 1.71232I
3.63204 + 5.12135I 5.87713 8.64312I
u = 0.225491 0.702834I
a = 0.212358 0.335622I
b = 0.39127 + 1.71232I
3.63204 5.12135I 5.87713 + 8.64312I
u = 0.290696 + 0.655817I
a = 0.279795 + 0.357972I
b = 0.417996 0.903025I
3.25229 + 1.41438I 4.70580 2.22096I
u = 0.290696 0.655817I
a = 0.279795 0.357972I
b = 0.417996 + 0.903025I
3.25229 1.41438I 4.70580 + 2.22096I
u = 1.283570 + 0.210194I
a = 0.89404 1.55425I
b = 0.229292 + 0.859047I
1.12425 2.76728I 0. + 3.97586I
u = 1.283570 0.210194I
a = 0.89404 + 1.55425I
b = 0.229292 0.859047I
1.12425 + 2.76728I 0. 3.97586I
u = 1.317130 + 0.218392I
a = 2.22707 0.75204I
b = 2.17192 + 1.88185I
1.43716 + 2.94730I 0
u = 1.317130 0.218392I
a = 2.22707 + 0.75204I
b = 2.17192 1.88185I
1.43716 2.94730I 0
u = 0.646576 + 0.028959I
a = 1.71193 0.86713I
b = 0.662046 + 0.361055I
1.67832 1.69625I 1.45396 + 4.31564I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.646576 0.028959I
a = 1.71193 + 0.86713I
b = 0.662046 0.361055I
1.67832 + 1.69625I 1.45396 4.31564I
u = 1.307710 + 0.361702I
a = 0.730497 + 0.872523I
b = 0.038517 0.940647I
0.125718 0.859000I 0
u = 1.307710 0.361702I
a = 0.730497 0.872523I
b = 0.038517 + 0.940647I
0.125718 + 0.859000I 0
u = 1.374750 + 0.100729I
a = 0.937295 + 0.058184I
b = 0.401012 + 0.417839I
4.00380 + 0.89695I 0
u = 1.374750 0.100729I
a = 0.937295 0.058184I
b = 0.401012 0.417839I
4.00380 0.89695I 0
u = 1.395900 + 0.204775I
a = 1.022420 + 0.746778I
b = 0.98876 1.47035I
5.90256 + 4.07376I 0
u = 1.395900 0.204775I
a = 1.022420 0.746778I
b = 0.98876 + 1.47035I
5.90256 4.07376I 0
u = 1.38885 + 0.28086I
a = 2.23443 1.30007I
b = 1.61945 + 1.79021I
1.50108 8.69698I 0
u = 1.38885 0.28086I
a = 2.23443 + 1.30007I
b = 1.61945 1.79021I
1.50108 + 8.69698I 0
u = 0.024475 + 0.578228I
a = 1.202030 + 0.432697I
b = 0.84787 1.24338I
2.81557 0.07740I 5.03252 0.22412I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.024475 0.578228I
a = 1.202030 0.432697I
b = 0.84787 + 1.24338I
2.81557 + 0.07740I 5.03252 + 0.22412I
u = 0.293128 + 0.498415I
a = 0.724756 + 0.441160I
b = 0.324784 + 0.529368I
0.54657 1.42879I 5.31935 + 4.51277I
u = 0.293128 0.498415I
a = 0.724756 0.441160I
b = 0.324784 0.529368I
0.54657 + 1.42879I 5.31935 4.51277I
u = 1.43383 + 0.26362I
a = 0.738341 1.202280I
b = 0.54490 + 1.45255I
2.31251 4.79347I 0
u = 1.43383 0.26362I
a = 0.738341 + 1.202280I
b = 0.54490 1.45255I
2.31251 + 4.79347I 0
u = 1.42214 + 0.32372I
a = 2.22593 + 1.15650I
b = 1.72849 2.18761I
2.9545 17.7145I 0
u = 1.42214 0.32372I
a = 2.22593 1.15650I
b = 1.72849 + 2.18761I
2.9545 + 17.7145I 0
u = 1.51106 + 0.03418I
a = 0.041421 + 0.318529I
b = 0.551162 0.994771I
7.13383 + 7.90887I 0
u = 1.51106 0.03418I
a = 0.041421 0.318529I
b = 0.551162 + 0.994771I
7.13383 7.90887I 0
u = 1.64915
a = 0.275951
b = 0.563647
9.99305 0
8
II. I
u
2
=
hu
26
a+u
26
+· · ·+b u, 4u
26
a+4u
26
+· · ·a + 5, u
27
2u
26
+· · ·4u
2
1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
a
u
26
a u
26
+ ··· + au + u
a
3
=
u
26
a 2u
26
+ ··· u 2
u
26
a u
26
+ ··· + a + 2u
a
5
=
2u
26
a 3u
26
+ ··· + a 1
u
26
2u
25
+ ··· a + 2
a
10
=
u
u
a
8
=
u
4
+ u
2
+ 1
u
4
2u
2
a
2
=
3u
26
+ 3u
25
+ ··· + a 2
u
26
a u
25
a + ··· + 3u + 1
a
9
=
u
26
a 2u
26
+ ··· 4u 1
3u
26
2u
25
+ ··· a + 2
a
9
=
u
26
a 2u
26
+ ··· 4u 1
3u
26
2u
25
+ ··· a + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
26
+ 3u
25
+ 11u
24
26u
23
56u
22
+ 83u
21
+ 159u
20
80u
19
221u
18
163u
17
35u
16
+ 448u
15
+ 606u
14
142u
13
752u
12
576u
11
+ 66u
10
+
578u
9
+ 432u
8
+ 26u
7
126u
6
129u
5
81u
4
38u
3
27u
2
5u + 3
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
54
4u
53
+ ··· u + 1
c
2
, c
9
u
54
2u
53
+ ··· 109u + 37
c
3
, c
5
u
54
3u
53
+ ··· + 18u + 27
c
4
(u
27
13u
26
+ ··· u + 2)
2
c
6
, c
10
, c
11
(u
27
+ 2u
26
+ ··· + 4u
2
+ 1)
2
c
7
(u
27
9u
26
+ ··· + 37u 8)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
54
12y
53
+ ··· + 5y + 1
c
2
, c
9
y
54
+ 50y
52
+ ··· + 67373y + 1369
c
3
, c
5
y
54
+ 13y
53
+ ··· 6318y + 729
c
4
(y
27
3y
26
+ ··· + 53y 4)
2
c
6
, c
10
, c
11
(y
27
24y
26
+ ··· 8y 1)
2
c
7
(y
27
+ 5y
26
+ ··· 375y 64)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.895940 + 0.471258I
a = 0.342281 0.519659I
b = 0.095449 + 0.261445I
1.130920 + 0.684553I 13.8481 5.2893I
u = 0.895940 + 0.471258I
a = 1.183610 + 0.725180I
b = 0.274271 0.648456I
1.130920 + 0.684553I 13.8481 5.2893I
u = 0.895940 0.471258I
a = 0.342281 + 0.519659I
b = 0.095449 0.261445I
1.130920 0.684553I 13.8481 + 5.2893I
u = 0.895940 0.471258I
a = 1.183610 0.725180I
b = 0.274271 + 0.648456I
1.130920 0.684553I 13.8481 + 5.2893I
u = 1.100980 + 0.299749I
a = 0.95742 1.49151I
b = 0.305719 + 1.067790I
0.896800 + 0.835412I 3.62755 4.72274I
u = 1.100980 + 0.299749I
a = 2.01018 0.00904I
b = 1.02376 1.27878I
0.896800 + 0.835412I 3.62755 4.72274I
u = 1.100980 0.299749I
a = 0.95742 + 1.49151I
b = 0.305719 1.067790I
0.896800 0.835412I 3.62755 + 4.72274I
u = 1.100980 0.299749I
a = 2.01018 + 0.00904I
b = 1.02376 + 1.27878I
0.896800 0.835412I 3.62755 + 4.72274I
u = 0.258632 + 0.812574I
a = 0.204845 + 0.236106I
b = 0.67915 + 1.58038I
0.86178 5.25397I 6.46955 + 10.01314I
u = 0.258632 + 0.812574I
a = 0.036879 + 0.212663I
b = 0.520153 0.752899I
0.86178 5.25397I 6.46955 + 10.01314I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.258632 0.812574I
a = 0.204845 0.236106I
b = 0.67915 1.58038I
0.86178 + 5.25397I 6.46955 10.01314I
u = 0.258632 0.812574I
a = 0.036879 0.212663I
b = 0.520153 + 0.752899I
0.86178 + 5.25397I 6.46955 10.01314I
u = 0.135996 + 0.743408I
a = 0.688838 + 0.344087I
b = 0.74927 + 1.65652I
3.79952 4.67674I 5.91242 + 7.08419I
u = 0.135996 + 0.743408I
a = 0.008951 + 0.347544I
b = 0.87796 1.45827I
3.79952 4.67674I 5.91242 + 7.08419I
u = 0.135996 0.743408I
a = 0.688838 0.344087I
b = 0.74927 1.65652I
3.79952 + 4.67674I 5.91242 7.08419I
u = 0.135996 0.743408I
a = 0.008951 0.347544I
b = 0.87796 + 1.45827I
3.79952 + 4.67674I 5.91242 7.08419I
u = 1.275050 + 0.128798I
a = 0.872080 0.946956I
b = 0.44926 + 1.70261I
3.61252 2.75180I 4.02480 + 5.63147I
u = 1.275050 + 0.128798I
a = 1.61610 2.37871I
b = 0.40151 + 2.10435I
3.61252 2.75180I 4.02480 + 5.63147I
u = 1.275050 0.128798I
a = 0.872080 + 0.946956I
b = 0.44926 1.70261I
3.61252 + 2.75180I 4.02480 5.63147I
u = 1.275050 0.128798I
a = 1.61610 + 2.37871I
b = 0.40151 2.10435I
3.61252 + 2.75180I 4.02480 5.63147I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.426561 + 0.478609I
a = 0.264904 + 0.981766I
b = 0.637652 + 0.148109I
0.44505 1.73895I 7.45580 + 5.77840I
u = 0.426561 + 0.478609I
a = 1.227590 + 0.092870I
b = 0.262831 + 0.693605I
0.44505 1.73895I 7.45580 + 5.77840I
u = 0.426561 0.478609I
a = 0.264904 0.981766I
b = 0.637652 0.148109I
0.44505 + 1.73895I 7.45580 5.77840I
u = 0.426561 0.478609I
a = 1.227590 0.092870I
b = 0.262831 0.693605I
0.44505 + 1.73895I 7.45580 5.77840I
u = 1.361910 + 0.175704I
a = 0.121170 + 0.544702I
b = 0.840179 + 0.397373I
5.91990 + 0.72025I 11.02491 0.63973I
u = 1.361910 + 0.175704I
a = 2.78369 + 0.64886I
b = 2.75677 0.87534I
5.91990 + 0.72025I 11.02491 0.63973I
u = 1.361910 0.175704I
a = 0.121170 0.544702I
b = 0.840179 0.397373I
5.91990 0.72025I 11.02491 + 0.63973I
u = 1.361910 0.175704I
a = 2.78369 0.64886I
b = 2.75677 + 0.87534I
5.91990 0.72025I 11.02491 + 0.63973I
u = 1.346310 + 0.301034I
a = 0.93357 + 1.81656I
b = 0.46852 1.68017I
0.87383 + 8.44603I 0.29895 8.39876I
u = 1.346310 + 0.301034I
a = 2.51803 0.62945I
b = 2.12120 + 1.38215I
0.87383 + 8.44603I 0.29895 8.39876I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.346310 0.301034I
a = 0.93357 1.81656I
b = 0.46852 + 1.68017I
0.87383 8.44603I 0.29895 + 8.39876I
u = 1.346310 0.301034I
a = 2.51803 + 0.62945I
b = 2.12120 1.38215I
0.87383 8.44603I 0.29895 + 8.39876I
u = 1.361280 + 0.230867I
a = 0.76323 + 1.29097I
b = 0.68764 1.90684I
5.17654 7.89313I 8.62044 + 9.21586I
u = 1.361280 + 0.230867I
a = 2.95892 1.08916I
b = 2.13759 + 2.13430I
5.17654 7.89313I 8.62044 + 9.21586I
u = 1.361280 0.230867I
a = 0.76323 1.29097I
b = 0.68764 + 1.90684I
5.17654 + 7.89313I 8.62044 9.21586I
u = 1.361280 0.230867I
a = 2.95892 + 1.08916I
b = 2.13759 2.13430I
5.17654 + 7.89313I 8.62044 9.21586I
u = 1.392250 + 0.184425I
a = 0.689778 + 0.165914I
b = 0.713590 1.011530I
6.04501 + 4.08549I 10.80221 3.62417I
u = 1.392250 + 0.184425I
a = 1.47187 + 1.27394I
b = 1.51868 1.81027I
6.04501 + 4.08549I 10.80221 3.62417I
u = 1.392250 0.184425I
a = 0.689778 0.165914I
b = 0.713590 + 1.011530I
6.04501 4.08549I 10.80221 + 3.62417I
u = 1.392250 0.184425I
a = 1.47187 1.27394I
b = 1.51868 + 1.81027I
6.04501 4.08549I 10.80221 + 3.62417I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.162222 + 0.561060I
a = 0.051560 0.625386I
b = 0.96597 1.94808I
0.32804 + 4.95240I 2.66900 10.41191I
u = 0.162222 + 0.561060I
a = 1.86160 + 0.59224I
b = 0.603163 + 0.183472I
0.32804 + 4.95240I 2.66900 10.41191I
u = 0.162222 0.561060I
a = 0.051560 + 0.625386I
b = 0.96597 + 1.94808I
0.32804 4.95240I 2.66900 + 10.41191I
u = 0.162222 0.561060I
a = 1.86160 0.59224I
b = 0.603163 0.183472I
0.32804 4.95240I 2.66900 + 10.41191I
u = 1.41446 + 0.33004I
a = 1.46356 0.33947I
b = 1.30700 + 0.85510I
4.46105 + 9.38162I 9.06666 9.66600I
u = 1.41446 + 0.33004I
a = 1.96789 + 1.01697I
b = 1.41394 2.11422I
4.46105 + 9.38162I 9.06666 9.66600I
u = 1.41446 0.33004I
a = 1.46356 + 0.33947I
b = 1.30700 0.85510I
4.46105 9.38162I 9.06666 + 9.66600I
u = 1.41446 0.33004I
a = 1.96789 1.01697I
b = 1.41394 + 2.11422I
4.46105 9.38162I 9.06666 + 9.66600I
u = 1.48928
a = 0.414877 + 0.101829I
b = 0.663673 0.708724I
9.10414 14.2140
u = 1.48928
a = 0.414877 0.101829I
b = 0.663673 + 0.708724I
9.10414 14.2140
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.206359 + 0.377187I
a = 0.000240 1.391780I
b = 0.959931 + 1.036890I
0.97705 2.90650I 6.25021 1.54831I
u = 0.206359 + 0.377187I
a = 2.67387 0.24264I
b = 0.437309 + 0.531753I
0.97705 2.90650I 6.25021 1.54831I
u = 0.206359 0.377187I
a = 0.000240 + 1.391780I
b = 0.959931 1.036890I
0.97705 + 2.90650I 6.25021 + 1.54831I
u = 0.206359 0.377187I
a = 2.67387 + 0.24264I
b = 0.437309 0.531753I
0.97705 + 2.90650I 6.25021 + 1.54831I
17
III.
I
u
3
= h−u
11
+6u
9
+· · ·+b3u, u
12
6u
10
+· · ·+a2, u
13
2u
12
+· · ·7u
2
1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
u
12
+ 6u
10
+ ··· + 2u + 2
u
11
6u
9
u
8
+ 12u
7
+ 5u
6
8u
5
7u
4
2u
3
+ 2u
2
+ 3u
a
3
=
4u
12
+ 2u
11
+ ··· 20u
3
21u
2
2u
12
u
11
+ ··· + 4u + 2
a
5
=
2u
12
+ 13u
10
+ ··· 10u 1
u
12
u
11
6u
10
+ 4u
9
+ 13u
8
3u
7
10u
6
5u
5
3u
4
+ 6u
3
+ 6u
2
+ 2
a
10
=
u
u
a
8
=
u
4
+ u
2
+ 1
u
4
2u
2
a
2
=
2u
12
+ u
11
+ ··· + 3u + 1
u
12
6u
10
+ ··· + 4u + 1
a
9
=
3u
12
+ 3u
11
+ ··· + u 4
u
12
u
11
6u
10
+ 4u
9
+ 14u
8
3u
7
14u
6
6u
5
+ 2u
4
+ 8u
3
+ 5u
2
u
a
9
=
3u
12
+ 3u
11
+ ··· + u 4
u
12
u
11
6u
10
+ 4u
9
+ 14u
8
3u
7
14u
6
6u
5
+ 2u
4
+ 8u
3
+ 5u
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 12u
12
+3u
11
+69u
10
+4u
9
142u
8
61u
7
+92u
6
+111u
5
+61u
4
41u
3
73u
2
22u10
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
13
+ u
12
+ ··· 2u
2
+ 1
c
2
, c
9
u
13
2u
11
+ ··· + u + 1
c
3
, c
5
u
13
+ 4u
12
+ ··· + 7u + 1
c
4
u
13
9u
12
+ ··· + 22u 3
c
6
u
13
2u
12
+ ··· 7u
2
1
c
7
u
13
+ 6u
12
+ ··· + 8u + 3
c
10
, c
11
u
13
+ 2u
12
+ ··· + 7u
2
+ 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
13
7y
12
+ ··· + 4y 1
c
2
, c
9
y
13
4y
12
+ ··· + 7y 1
c
3
, c
5
y
13
+ 8y
12
+ ··· + 11y 1
c
4
y
13
+ 3y
12
+ ··· 38y 9
c
6
, c
10
, c
11
y
13
14y
12
+ ··· 14y 1
c
7
y
13
6y
12
+ ··· 122y 9
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.009960 + 0.393104I
a = 0.925275 0.638185I
b = 0.104514 + 0.740294I
0.418219 + 0.647136I 0.16669 3.99472I
u = 1.009960 0.393104I
a = 0.925275 + 0.638185I
b = 0.104514 0.740294I
0.418219 0.647136I 0.16669 + 3.99472I
u = 0.167884 + 0.751728I
a = 0.226076 0.027387I
b = 0.47713 1.33789I
2.18684 4.76062I 0.16967 + 6.96566I
u = 0.167884 0.751728I
a = 0.226076 + 0.027387I
b = 0.47713 + 1.33789I
2.18684 + 4.76062I 0.16967 6.96566I
u = 1.341150 + 0.144131I
a = 1.56947 + 0.55075I
b = 0.882764 0.005150I
4.89774 1.83075I 8.30741 + 4.84620I
u = 1.341150 0.144131I
a = 1.56947 0.55075I
b = 0.882764 + 0.005150I
4.89774 + 1.83075I 8.30741 4.84620I
u = 1.374030 + 0.142033I
a = 0.56717 + 1.54087I
b = 0.23741 2.17678I
5.16744 5.48401I 6.26872 + 7.46655I
u = 1.374030 0.142033I
a = 0.56717 1.54087I
b = 0.23741 + 2.17678I
5.16744 + 5.48401I 6.26872 7.46655I
u = 1.365520 + 0.295205I
a = 2.00613 0.78110I
b = 1.34623 + 1.31239I
2.66514 + 8.52224I 6.00968 8.13315I
u = 1.365520 0.295205I
a = 2.00613 + 0.78110I
b = 1.34623 1.31239I
2.66514 8.52224I 6.00968 + 8.13315I
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.015927 + 0.356982I
a = 2.40486 + 0.90799I
b = 0.330299 + 1.152730I
0.51888 + 3.68063I 0.09698 6.26701I
u = 0.015927 0.356982I
a = 2.40486 0.90799I
b = 0.330299 1.152730I
0.51888 3.68063I 0.09698 + 6.26701I
u = 1.65857
a = 0.200450
b = 0.513607
9.93750 69.0380
22
IV. I
u
4
= hb + 1, a
2
3a + 3, u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
1
a
7
=
1
1
a
1
=
1
0
a
4
=
a
1
a
3
=
a 1
1
a
5
=
a
1
a
10
=
1
1
a
8
=
1
1
a
2
=
2a 3
a + 1
a
9
=
2a + 4
a 2
a
9
=
2a + 4
a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
c
9
u
2
u + 1
c
3
, c
5
, c
6
(u + 1)
2
c
4
, c
7
u
2
c
10
, c
11
(u 1)
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
8
c
9
y
2
+ y + 1
c
3
, c
5
, c
6
c
10
, c
11
(y 1)
2
c
4
, c
7
y
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.50000 + 0.86603I
b = 1.00000
0 3.00000
u = 1.00000
a = 1.50000 0.86603I
b = 1.00000
0 3.00000
26
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
2
u + 1)(u
13
+ u
12
+ ··· 2u
2
+ 1)(u
40
u
39
+ ··· + 2u 1)
· (u
54
4u
53
+ ··· u + 1)
c
2
, c
9
(u
2
u + 1)(u
13
2u
11
+ ··· + u + 1)(u
40
+ 2u
38
+ ··· u 1)
· (u
54
2u
53
+ ··· 109u + 37)
c
3
, c
5
((u + 1)
2
)(u
13
+ 4u
12
+ ··· + 7u + 1)(u
40
+ 6u
39
+ ··· 23u + 1)
· (u
54
3u
53
+ ··· + 18u + 27)
c
4
u
2
(u
13
9u
12
+ ··· + 22u 3)(u
27
13u
26
+ ··· u + 2)
2
· (u
40
+ 22u
39
+ ··· + 9u + 2)
c
6
((u + 1)
2
)(u
13
2u
12
+ ··· 7u
2
1)(u
27
+ 2u
26
+ ··· + 4u
2
+ 1)
2
· (u
40
5u
39
+ ··· 9u 4)
c
7
u
2
(u
13
+ 6u
12
+ ··· + 8u + 3)(u
27
9u
26
+ ··· + 37u 8)
2
· (u
40
+ 15u
39
+ ··· + 89u + 4)
c
10
, c
11
((u 1)
2
)(u
13
+ 2u
12
+ ··· + 7u
2
+ 1)(u
27
+ 2u
26
+ ··· + 4u
2
+ 1)
2
· (u
40
5u
39
+ ··· 9u 4)
27
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
2
+ y + 1)(y
13
7y
12
+ ··· + 4y 1)(y
40
+ 17y
39
+ ··· + 44y + 1)
· (y
54
12y
53
+ ··· + 5y + 1)
c
2
, c
9
(y
2
+ y + 1)(y
13
4y
12
+ ··· + 7y 1)(y
40
+ 4y
39
+ ··· 23y + 1)
· (y
54
+ 50y
52
+ ··· + 67373y + 1369)
c
3
, c
5
((y 1)
2
)(y
13
+ 8y
12
+ ··· + 11y 1)(y
40
24y
39
+ ··· 199y + 1)
· (y
54
+ 13y
53
+ ··· 6318y + 729)
c
4
y
2
(y
13
+ 3y
12
+ ··· 38y 9)(y
27
3y
26
+ ··· + 53y 4)
2
· (y
40
+ 28y
38
+ ··· 5y + 4)
c
6
, c
10
, c
11
((y 1)
2
)(y
13
14y
12
+ ··· 14y 1)(y
27
24y
26
+ ··· 8y 1)
2
· (y
40
37y
39
+ ··· 9y + 16)
c
7
y
2
(y
13
6y
12
+ ··· 122y 9)(y
27
+ 5y
26
+ ··· 375y 64)
2
· (y
40
y
39
+ ··· 937y + 16)
28